4,428 research outputs found

    Efficient Processing of Huge Ontologies in Logic and Relational Databases

    Get PDF
    Today ontologies are heavily used in the sematic web. As they grow in size reasoning systems can’t work without secondary storage anymore. Thus database technology is required for storing and processing huge ontologies. In this paper we present an efficient technique for representing and reasoning with ontologies in databases. We also present some benchmarking results in comparison with previous approaches

    Using Ontologies for Semantic Data Integration

    Get PDF
    While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed

    Maintaining Integrity Constraints in Semantic Web

    Get PDF
    As an expressive knowledge representation language for Semantic Web, Web Ontology Language (OWL) plays an important role in areas like science and commerce. The problem of maintaining integrity constraints arises because OWL employs the Open World Assumption (OWA) as well as the Non-Unique Name Assumption (NUNA). These assumptions are typically suitable for representing knowledge distributed across the Web, where the complete knowledge about a domain cannot be assumed, but make it challenging to use OWL itself for closed world integrity constraint validation. Integrity constraints (ICs) on ontologies have to be enforced; otherwise conflicting results would be derivable from the same knowledge base (KB). The current trends of incorporating ICs into OWL are based on its query language SPARQL, alternative semantics, or logic programming. These methods usually suffer from limited types of constraints they can handle, and/or inherited computational expensiveness. This dissertation presents a comprehensive and efficient approach to maintaining integrity constraints. The design enforces data consistency throughout the OWL life cycle, including the processes of OWL generation, maintenance, and interactions with other ontologies. For OWL generation, the Paraconsistent model is used to maintain integrity constraints during the relational database to OWL translation process. Then a new rule-based language with set extension is introduced as a platform to allow users to specify constraints, along with a demonstration of 18 commonly used constraints written in this language. In addition, a new constraint maintenance system, called Jena2Drools, is proposed and implemented, to show its effectiveness and efficiency. To further handle inconsistencies among multiple distributed ontologies, this work constructs a framework to break down global constraints into several sub-constraints for efficient parallel validation

    Storing and Querying Ontologies in Logic Databases

    Get PDF
    The intersection of Description Logic inspired ontology languages with Logic Programs has been recently analyzed in [GHVD03]. The resulting language, called Description Logic Programs, covers RDF Schema and a notable portion of OWL Lite. However, the proposed mapping in [GHVD03] from the corresponding OWL fragment into Logic Programs has shown scalability as well as representational de�cits within our experiments and analysis. In this paper we propose an alternative mapping resulting in lower computational complexity and more representational exibility. We also present benchmarking results for both mappings with ontologies of di�erent size and complexity

    A review of the state of the art in Machine Learning on the Semantic Web: Technical Report CSTR-05-003

    Get PDF

    Efficient mining of Fuzzy Association Rules from the Pre-Processed Dataset

    Get PDF
    Association rule mining is an active data mining research area. Recent years have witnessed many efforts on discovering fuzzy associations. The key strength of fuzzy association rule mining is its completeness. This strength, however, comes with a major drawback to handle large datasets. It often produces a huge number of candidate itemsets. The huge number of candidate itemsets makes it ineffective for a data mining system to analyze them. In the end, it produces a huge number of fuzzy associations. This is particularly true for datasets whose attributes are highly correlated. The huge number of fuzzy associations makes it very difficult for a human user to analyze them. Existing research has shown that most of the discovered rules are actually redundant or insignificant. In this paper, we propose a novel technique to overcome these problems; we are preprocessing the data tuples by focusing on similar behaviour attributes and ontology. Finally, the efficiency and advantages of this algorithm have been proved by experimental results
    • …
    corecore