683 research outputs found

    CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements

    Full text link
    Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a ceteris paribus (all else being equal) interpretation. Such a representation is often compact and arguably quite natural in many circumstances. We provide a formal semantics for this model, and describe how the structure of the network can be exploited in several inference tasks, such as determining whether one outcome dominates (is preferred to) another, ordering a set outcomes according to the preference relation, and constructing the best outcome subject to available evidence

    From 'tree' based Bayesian networks to mutual information classifiers : deriving a singly connected network classifier using an information theory based technique

    Get PDF
    For reasoning under uncertainty the Bayesian network has become the representation of choice. However, except where models are considered 'simple' the task of construction and inference are provably NP-hard. For modelling larger 'real' world problems this computational complexity has been addressed by methods that approximate the model. The Naive Bayes classifier, which has strong assumptions of independence among features, is a common approach, whilst the class of trees is another less extreme example. In this thesis we propose the use of an information theory based technique as a mechanism for inference in Singly Connected Networks. We call this a Mutual Information Measure classifier, as it corresponds to the restricted class of trees built from mutual information. We show that the new approach provides for both an efficient and localised method of classification, with performance accuracies comparable with the less restricted general Bayesian networks. To improve the performance of the classifier, we additionally investigate the possibility of expanding the class Markov blanket by use of a Wrapper approach and further show that the performance can be improved by focusing on the class Markov blanket and that the improvement is not at the expense of increased complexity. Finally, the two methods are applied to the task of diagnosing the 'real' world medical domain, Acute Abdominal Pain. Known to be both a different and challenging domain to classify, the objective was to investigate the optiniality claims, in respect of the Naive Bayes classifier, that some researchers have argued, for classifying in this domain. Despite some loss of representation capabilities we show that the Mutual Information Measure classifier can be effectively applied to the domain and also provides a recognisable qualitative structure without violating 'real' world assertions. In respect of its 'selective' variant we further show that the improvement achieves a comparable predictive accuracy to the Naive Bayes classifier and that the Naive Bayes classifier's 'overall' performance is largely due the contribution of the majority group Non-Specific Abdominal Pain, a group of exclusion

    An Application of Bayesian Network in Cognitive Behavioral Therapy

    Get PDF
    Mental health has received increased focus in recent years, with a larger emphasis on treatment and acceptance. However, evidence-based psychological interventions are of poor availability and have room for improvement. The amount of data being gathered across applications and practices provide opportunities for deeper analysis through machine learning based technologies. By applying Bayesian networks (BNs) in a cognitive behavioral therapy for adults with ADHD, this research analyzes historic self-report data to predict the behavior of future participants at an early stage of the online intervention. Bayesian networks represent probabilistic models that describe the joint probability distribution through an acyclic graph. The contribution of this thesis is an artifact with the purpose of serving as a decision making support tool. Methods of Design Science Research was applied to achieve this, in a development cycle with three main iterations. Using Bayesian networks for analyzing behavioral patterns yield positive results with its predictive capabilities when dealing with uncertainty. Domain experts from the internet-delivered intervention provided useful feedback and insight that contributed to the novelty and research scope of this thesis. Future work should update the model when a larger population sample is available, and focus on implementing the artifact in a more user-centered desktop application.Masteroppgave i informasjonsvitenskapINFO390MASV-INF

    The problem of granularity for scientific explanation

    Get PDF
    This dissertation aims to determine the optimal level of granularity for the variables used in probabilistic causal models. These causal models are useful for generating explanations in a number of scientific contexts. In Chapter 1, I argue that there is rarely a unique level of granularity at which a given phenomenon can be causally explained, thereby rejecting various causal exclusion arguments. In Chapter 2, I consider several recent proposals for measuring the explanatory power of causal explanations, and show that these measures fail to track the comparative depth of explanations given at different levels of granularity. In Chapter 3, I offer a pragmatic account of how to partition the measure space of a causal variable so as to optimally explain its effect. My account uses the decision-theoretic notion of value of information, and indexes the relative depth of an explanation to a particular agent faced with a particular decision problem. Chapter 4 applies this same decisiontheoretic framework to answer the epistemic question of how to discover constitutive relationships in nature. In Chapter 5, I describe the formal details of the relationship between random variables that are meant to be coarse-grained and fine-grained representations of the same type of phenomenon. I use this formal framework to rebut a popular argument for the view that special science probabilities can be objective chances. Chapter 6 discusses challenges related to the causal interpretation of Bayes nets that use imprecise rather than precise probabilities

    Analyzing Structured Scenarios by Tracking People and Their Limbs

    Get PDF
    The analysis of human activities is a fundamental problem in computer vision. Though complex, interactions between people and their environment often exhibit a spatio-temporal structure that can be exploited during analysis. This structure can be leveraged to mitigate the effects of missing or noisy visual observations caused, for example, by sensor noise, inaccurate models, or occlusion. Trajectories of people and their hands and feet, often sufficient for recognition of human activities, lead to a natural qualitative spatio-temporal description of these interactions. This work introduces the following contributions to the task of human activity understanding: 1) a framework that efficiently detects and tracks multiple interacting people and their limbs, 2) an event recognition approach that integrates both logical and probabilistic reasoning in analyzing the spatio-temporal structure of multi-agent scenarios, and 3) an effective computational model of the visibility constraints imposed on humans as they navigate through their environment. The tracking framework mixes probabilistic models with deterministic constraints and uses AND/OR search and lazy evaluation to efficiently obtain the globally optimal solution in each frame. Our high-level reasoning framework efficiently and robustly interprets noisy visual observations to deduce the events comprising structured scenarios. This is accomplished by combining First-Order Logic, Allen's Interval Logic, and Markov Logic Networks with an event hypothesis generation process that reduces the size of the ground Markov network. When applied to outdoor one-on-one basketball videos, our framework tracks the players and, guided by the game rules, analyzes their interactions with each other and the ball, annotating the videos with the relevant basketball events that occurred. Finally, motivated by studies of spatial behavior, we use a set of features from visibility analysis to represent spatial context in the interpretation of human spatial activities. We demonstrate the effectiveness of our representation on trajectories generated by humans in a virtual environment

    Bayesian Networks with Expert Elicitation as Applicable to Student Retention in Institutional Research

    Get PDF
    The application of Bayesian networks within the field of institutional research is explored through the development of a Bayesian network used to predict first- to second-year retention of undergraduates. A hybrid approach to model development is employed, in which formal elicitation of subject-matter expertise is combined with machine learning in designing model structure and specification of model parameters. Subject-matter experts include two academic advisors at a small, private liberal arts college in the southeast, and the data used in machine learning include six years of historical student-related information (i.e., demographic, admissions, academic, and financial) on 1,438 first-year students. Netica 5.12, a software package designed for constructing Bayesian networks, is used for building and validating the model. Evaluation of the resulting model’s predictive capabilities is examined, as well as analyses of sensitivity, internal validity, and model complexity. Additionally, the utility of using Bayesian networks within institutional research and higher education is discussed. The importance of comprehensive evaluation is highlighted, due to the study’s inclusion of an unbalanced data set. Best practices and experiences with expert elicitation are also noted, including recommendations for use of formal elicitation frameworks and careful consideration of operating definitions. Academic preparation and financial need risk profile are identified as key variables related to retention, and the need for enhanced data collection surrounding such variables is also revealed. For example, the experts emphasize study skills as an important predictor of retention while noting the absence of collection of quantitative data related to measuring students’ study skills. Finally, the importance and value of the model development process is stressed, as stakeholders are required to articulate, define, discuss, and evaluate model components, assumptions, and results

    Structure and Complexity in Planning with Unary Operators

    Full text link
    Unary operator domains -- i.e., domains in which operators have a single effect -- arise naturally in many control problems. In its most general form, the problem of STRIPS planning in unary operator domains is known to be as hard as the general STRIPS planning problem -- both are PSPACE-complete. However, unary operator domains induce a natural structure, called the domain's causal graph. This graph relates between the preconditions and effect of each domain operator. Causal graphs were exploited by Williams and Nayak in order to analyze plan generation for one of the controllers in NASA's Deep-Space One spacecraft. There, they utilized the fact that when this graph is acyclic, a serialization ordering over any subgoal can be obtained quickly. In this paper we conduct a comprehensive study of the relationship between the structure of a domain's causal graph and the complexity of planning in this domain. On the positive side, we show that a non-trivial polynomial time plan generation algorithm exists for domains whose causal graph induces a polytree with a constant bound on its node indegree. On the negative side, we show that even plan existence is hard when the graph is a directed-path singly connected DAG. More generally, we show that the number of paths in the causal graph is closely related to the complexity of planning in the associated domain. Finally we relate our results to the question of complexity of planning with serializable subgoals
    • …
    corecore