388 research outputs found

    The tractability frontier of well-designed SPARQL queries

    Full text link
    We study the complexity of query evaluation of SPARQL queries. We focus on the fundamental fragment of well-designed SPARQL restricted to the AND, OPTIONAL and UNION operators. Our main result is a structural characterisation of the classes of well-designed queries that can be evaluated in polynomial time. In particular, we introduce a new notion of width called domination width, which relies on the well-known notion of treewidth. We show that, under some complexity theoretic assumptions, the classes of well-designed queries that can be evaluated in polynomial time are precisely those of bounded domination width

    Mine 'Em All: A Note on Mining All Graphs

    Get PDF
    International audienceWe study the complexity of the problem of enumerating all graphs with frequency at least 1 and computing their support. We show that there are hereditary classes of graphs for which the complexity of this problem depends on the order in which the graphs should be enumerated (e.g. from frequent to infrequent or from small to large). For instance, the problem can be solved with polynomial delay for databases of planar graphs when the enumerated graphs should be output from large to small but it cannot be solved even in incremental-polynomial time when the enumerated graphs should be output from most frequent to least frequent (unless P=NP)

    Parameterized Approximation Algorithms for Bidirected Steiner Network Problems

    Get PDF
    The Directed Steiner Network (DSN) problem takes as input a directed edge-weighted graph G=(V,E)G=(V,E) and a set DV×V\mathcal{D}\subseteq V\times V of kk demand pairs. The aim is to compute the cheapest network NGN\subseteq G for which there is an sts\to t path for each (s,t)D(s,t)\in\mathcal{D}. It is known that this problem is notoriously hard as there is no k1/4o(1)k^{1/4-o(1)}-approximation algorithm under Gap-ETH, even when parametrizing the runtime by kk [Dinur & Manurangsi, ITCS 2018]. In light of this, we systematically study several special cases of DSN and determine their parameterized approximability for the parameter kk. For the bi-DSNPlanar_\text{Planar} problem, the aim is to compute a planar optimum solution NGN\subseteq G in a bidirected graph GG, i.e., for every edge uvuv of GG the reverse edge vuvu exists and has the same weight. This problem is a generalization of several well-studied special cases. Our main result is that this problem admits a parameterized approximation scheme (PAS) for kk. We also prove that our result is tight in the sense that (a) the runtime of our PAS cannot be significantly improved, and (b) it is unlikely that a PAS exists for any generalization of bi-DSNPlanar_\text{Planar}, unless FPT=W[1]. One important special case of DSN is the Strongly Connected Steiner Subgraph (SCSS) problem, for which the solution network NGN\subseteq G needs to strongly connect a given set of kk terminals. It has been observed before that for SCSS a parameterized 22-approximation exists when parameterized by kk [Chitnis et al., IPEC 2013]. We give a tight inapproximability result by showing that for kk no parameterized (2ε)(2-\varepsilon)-approximation algorithm exists under Gap-ETH. Additionally we show that when restricting the input of SCSS to bidirected graphs, the problem remains NP-hard but becomes FPT for kk

    Current Algorithms for Detecting Subgraphs of Bounded Treewidth Are Probably Optimal

    Get PDF
    The Subgraph Isomorphism problem is of considerable importance in computer science. We examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of applications. This problem has a well-known algorithm via color-coding that runs in time O(n^{tw(H)+1}) [Alon, Yuster, Zwick\u2795], where n is the number of vertices of the host graph G. While there are pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time of O(n^{tw(H)+1-?}) or even faster (e.g. for k-cliques), it is not known whether such improvements are possible for all patterns. The only known lower bound rules out time n^{o(tw(H) / log(tw(H)))} for any class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx\u2707]. In this paper, we demonstrate the existence of maximally hard pattern graphs H that require time n^{tw(H)+1-o(1)}. Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard assumption from fine-grained complexity theory, we prove the following asymptotic statement for large treewidth t: For any ? > 0 there exists t ? 3 and a pattern graph H of treewidth t such that Subgraph Isomorphism on pattern H has no algorithm running in time O(n^{t+1-?}). Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for each specific treewidth t ? 3: For any t ? 3 there exists a pattern graph H of treewidth t such that for any ? > 0 Subgraph Isomorphism on pattern H has no algorithm running in time O(n^{t+1-?}). In addition to these main results, we explore (1) colored and uncolored problem variants (and why they are equivalent for most cases), (2) Subgraph Isomorphism for tw < 3, (3) Subgraph Isomorphism parameterized by pathwidth instead of treewidth, and (4) a weighted variant that we call Exact Weight Subgraph Isomorphism, for which we examine pseudo-polynomial time algorithms. For many of these settings we obtain similarly tight upper and lower bounds

    Detecting and counting small subgraphs, and evaluating a parameterized Tutte polynomial: lower bounds via toroidal grids and Cayley graph expanders

    Get PDF
    Given a graph property Φ\Phi, we consider the problem EdgeSub(Φ)\mathtt{EdgeSub}(\Phi), where the input is a pair of a graph GG and a positive integer kk, and the task is to decide whether GG contains a kk-edge subgraph that satisfies Φ\Phi. Specifically, we study the parameterized complexity of EdgeSub(Φ)\mathtt{EdgeSub}(\Phi) and of its counting problem #EdgeSub(Φ)\#\mathtt{EdgeSub}(\Phi) with respect to both approximate and exact counting. We obtain a complete picture for minor-closed properties Φ\Phi: the decision problem EdgeSub(Φ)\mathtt{EdgeSub}(\Phi) always admits an FPT algorithm and the counting problem #EdgeSub(Φ)\#\mathtt{EdgeSub}(\Phi) always admits an FPTRAS. For exact counting, we present an exhaustive and explicit criterion on the property Φ\Phi which, if satisfied, yields fixed-parameter tractability and otherwise #W[1]\#\mathsf{W[1]}-hardness. Additionally, most of our hardness results come with an almost tight conditional lower bound under the so-called Exponential Time Hypothesis, ruling out algorithms for #EdgeSub(Φ)\#\mathtt{EdgeSub}(\Phi) that run in time f(k)Go(k/logk)f(k)\cdot|G|^{o(k/\log k)} for any computable function ff. As a main technical result, we gain a complete understanding of the coefficients of toroidal grids and selected Cayley graph expanders in the homomorphism basis of #EdgeSub(Φ)\#\mathtt{EdgeSub}(\Phi). This allows us to establish hardness of exact counting using the Complexity Monotonicity framework due to Curticapean, Dell and Marx (STOC'17). Our methods can also be applied to a parameterized variant of the Tutte Polynomial TGkT^k_G of a graph GG, to which many known combinatorial interpretations of values of the (classical) Tutte Polynomial can be extended. As an example, TGk(2,1)T^k_G(2,1) corresponds to the number of kk-forests in the graph GG. Our techniques allow us to completely understand the parametrized complexity of computing the evaluation of TGkT^k_G at every pair of rational coordinates (x,y)(x,y)

    Finding and Counting Patterns in Sparse Graphs

    Get PDF
    corecore