8,690 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Functional Nanomaterials and Polymer Nanocomposites: Current Uses and Potential Applications

    Get PDF
    This book covers a broad range of subjects, from smart nanoparticles and polymer nanocomposite synthesis and the study of their fundamental properties to the fabrication and characterization of devices and emerging technologies with smart nanoparticles and polymer integration

    Digitalization and Development

    Get PDF
    This book examines the diffusion of digitalization and Industry 4.0 technologies in Malaysia by focusing on the ecosystem critical for its expansion. The chapters examine the digital proliferation in major sectors of agriculture, manufacturing, e-commerce and services, as well as the intermediary organizations essential for the orderly performance of socioeconomic agents. The book incisively reviews policy instruments critical for the effective and orderly development of the embedding organizations, and the regulatory framework needed to quicken the appropriation of socioeconomic synergies from digitalization and Industry 4.0 technologies. It highlights the importance of collaboration between government, academic and industry partners, as well as makes key recommendations on how to encourage adoption of IR4.0 technologies in the short- and long-term. This book bridges the concepts and applications of digitalization and Industry 4.0 and will be a must-read for policy makers seeking to quicken the adoption of its technologies

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Unmanned-Aircraft-System-Assisted Early Wildfire Detection with Air Quality Sensors †

    Get PDF
    Numerous Hectares of Land Are Destroyed by Wildfires Every Year, Causing Harm to the Environment, the Economy, and the Ecology. More Than Fifty Million Acres Have Burned in Several States as a Result of Recent Forest Fires in the Western United States and Australia. According to Scientific Predictions, as the Climate Warms and Dries, Wildfires Will Become More Intense and Frequent, as Well as More Dangerous. These Unavoidable Catastrophes Emphasize How Important Early Wildfire Detection and Prevention Are. the Energy Management System Described in This Paper Uses an Unmanned Aircraft System (UAS) with Air Quality Sensors (AQSs) to Monitor Spot Fires Before They Spread. the Goal Was to Develop an Efficient Autonomous Patrolling System that Detects Early Wildfires While Maximizing the Battery Life of the UAS to Cover Broad Areas. the UAS Will Send Real-Time Data (Sensor Readings, Thermal Imaging, Etc.) to a Nearby Base Station (BS) When a Wildfire is Discovered. an Optimization Model Was Developed to Minimize the Total Amount of Energy Used by the UAS While Maintaining the Required Levels of Data Quality. Finally, the Simulations Showed the Performance of the Proposed Solution under Different Stability Conditions and for Different Minimum Data Rate Types

    Improving low latency applications for reconfigurable devices

    Get PDF
    This thesis seeks to improve low latency application performance via architectural improvements in reconfigurable devices. This is achieved by improving resource utilisation and access, and by exploiting the different environments within which reconfigurable devices are deployed. Our first contribution leverages devices deployed at the network level to enable the low latency processing of financial market data feeds. Financial exchanges transmit messages via two identical data feeds to reduce the chance of message loss. We present an approach to arbitrate these redundant feeds at the network level using a Field-Programmable Gate Array (FPGA). With support for any messaging protocol, we evaluate our design using the NASDAQ TotalView-ITCH, OPRA, and ARCA data feed protocols, and provide two simultaneous outputs: one prioritising low latency, and one prioritising high reliability with three dynamically configurable windowing methods. Our second contribution is a new ring-based architecture for low latency, parallel access to FPGA memory. Traditional FPGA memory is formed by grouping block memories (BRAMs) together and accessing them as a single device. Our architecture accesses these BRAMs independently and in parallel. Targeting memory-based computing, which stores pre-computed function results in memory, we benefit low latency applications that rely on: highly-complex functions; iterative computation; or many parallel accesses to a shared resource. We assess square root, power, trigonometric, and hyperbolic functions within the FPGA, and provide a tool to convert Python functions to our new architecture. Our third contribution extends the ring-based architecture to support any FPGA processing element. We unify E heterogeneous processing elements within compute pools, with each element implementing the same function, and the pool serving D parallel function calls. Our implementation-agnostic approach supports processing elements with different latencies, implementations, and pipeline lengths, as well as non-deterministic latencies. Compute pools evenly balance access to processing elements across the entire application, and are evaluated by implementing eight different neural network activation functions within an FPGA.Open Acces

    RRP: a reliable reinforcement learning based routing protocol for wireless medical sensor networks.

    Get PDF
    Wireless medical sensor networks (WMSNs) offer innovative healthcare applications that improve patients' quality of life, provide timely monitoring tools for physicians, and support national healthcare systems. However, despite these benefits, widespread adoption of WMSN advancements is still hampered by security concerns and limitations of routing protocols. Routing in WMSNs is a challenging task due to the fact that some WMSN requirements are overlooked by existing routing proposals. To overcome these challenges, this paper proposes a reliable multi-agent reinforcement learning based routing protocol (RRP). RRP is a lightweight attacks-resistant routing protocol designed to meet the unique requirements of WMSN. It uses a novel Q-learning model to reduce resource consumption combined with an effective trust management system to defend against various packet-dropping attacks. Experimental results prove the lightweightness of RRP and its robustness against blackhole, selective forwarding, sinkhole and complicated on-off attacks

    Conductive polymer based hydrogels and their application in wearable sensors: a review

    Get PDF
    Hydrogels have been attracting increasing attention in wearable electronics, due to their intrinsic biomimetic features, highly tunable chemical-physical properties (mechanical, electrical, etc), and excellent biocompatibility. Among many proposed varieties, conductive polymer-based hydrogels (CPHs) have emerged as a promising candidate for future wearable sensor designs, with a capability of realizing desired features using different tuning strategies ranging from molecular design (with a low lengthscale of 10-10 m) to micro-structural configuration (up to a lengthscale of 10-2 m). However, considerable challenges remain to be overcome, such as the limited strain sensing range due to the mechanical strength, the signal loss/instability caused by swelling/deswelling, the significant hysteresis of sensing signal, the de-hydration induced malfunctions, the surface/interfacial failure during manufacturing/processing, etc. This review aims to offer a targeted scan of recent advancements in CPH based wearable sensor technology, from the establishment of dedicated structure-property relationships in the lab to the advanced manufacturing routes for potential scale-up production. The application of CPHs in wearable sensors is also explored, with suggested new research avenues and prospects for CPHs in the future also included.Abstract text goes here

    Weather or not? The role of international sanctions and climate on food prices in Iran

    Get PDF
    IntroductionThe scarcity of resources have affected food production, which has challenged the ability of Iran to provide adequate food for the population. Iterative and mounting sanctions on Iran by the international community have seriously eroded Iran's access to agricultural technology and resources to support a growing population. Limited moisture availability also affects Iran's agricultural production. The aim of this study was to analyze the influence of inflation, international sanctions, weather disturbances, and domestic crop production on the price of rice, wheat and lentils from 2010 to 2021 in Iran.MethodData were obtained from the statistical yearbooks of the Ministry of Agriculture in Iran, Statistical Center of Iran, and the Central Bank of Iran. We analyzed econometric measures of food prices, including CPI, food inflation, subsidy reform plan and sanctions to estimate economic relationships. After deflating the food prices through CPI and detrending the time series to resolve the non-linear issue, we used monthly Climate Hazards group Infrared Precipitation with Stations (CHIRPS) precipitation data to analyze the influence of weather disturbances on food prices.Results and discussionThe price of goods not only provides an important indicator of the balance between agricultural production and market demand, but also has strong impacts on food affordability and food security. This novel study used a combination of economic and climate factors to analyze the food prices in Iran. Our statistical modeling framework found that the monthly precipitation on domestic food prices, and ultimately food access, in the country is much less important than the international sanctions, lowering Iran's productive capability and negatively impacting its food security
    • …
    corecore