30,714 research outputs found

    Lipschitz gradients for global optimization in a one-point-based partitioning scheme

    Get PDF
    A global optimization problem is studied where the objective function f(x)f(x) is a multidimensional black-box function and its gradient f(x)f'(x) satisfies the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant KK. Different methods for solving this problem by using an a priori given estimate of KK, its adaptive estimates, and adaptive estimates of local Lipschitz constants are known in the literature. Recently, the authors have proposed a one-dimensional algorithm working with multiple estimates of the Lipschitz constant for f(x)f'(x) (the existence of such an algorithm was a challenge for 15 years). In this paper, a new multidimensional geometric method evolving the ideas of this one-dimensional scheme and using an efficient one-point-based partitioning strategy is proposed. Numerical experiments executed on 800 multidimensional test functions demonstrate quite a promising performance in comparison with popular DIRECT-based methods.Comment: 25 pages, 4 figures, 5 tables. arXiv admin note: text overlap with arXiv:1103.205

    Dynamic Metric Learning from Pairwise Comparisons

    Full text link
    Recent work in distance metric learning has focused on learning transformations of data that best align with specified pairwise similarity and dissimilarity constraints, often supplied by a human observer. The learned transformations lead to improved retrieval, classification, and clustering algorithms due to the better adapted distance or similarity measures. Here, we address the problem of learning these transformations when the underlying constraint generation process is nonstationary. This nonstationarity can be due to changes in either the ground-truth clustering used to generate constraints or changes in the feature subspaces in which the class structure is apparent. We propose Online Convex Ensemble StrongLy Adaptive Dynamic Learning (OCELAD), a general adaptive, online approach for learning and tracking optimal metrics as they change over time that is highly robust to a variety of nonstationary behaviors in the changing metric. We apply the OCELAD framework to an ensemble of online learners. Specifically, we create a retro-initialized composite objective mirror descent (COMID) ensemble (RICE) consisting of a set of parallel COMID learners with different learning rates, demonstrate RICE-OCELAD on both real and synthetic data sets and show significant performance improvements relative to previously proposed batch and online distance metric learning algorithms.Comment: to appear Allerton 2016. arXiv admin note: substantial text overlap with arXiv:1603.0367

    Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants

    Get PDF
    In this paper, the global optimization problem minySF(y)\min_{y\in S} F(y) with SS being a hyperinterval in N\Re^N and F(y)F(y) satisfying the Lipschitz condition with an unknown Lipschitz constant is considered. It is supposed that the function F(y)F(y) can be multiextremal, non-differentiable, and given as a `black-box'. To attack the problem, a new global optimization algorithm based on the following two ideas is proposed and studied both theoretically and numerically. First, the new algorithm uses numerical approximations to space-filling curves to reduce the original Lipschitz multi-dimensional problem to a univariate one satisfying the H\"{o}lder condition. Second, the algorithm at each iteration applies a new geometric technique working with a number of possible H\"{o}lder constants chosen from a set of values varying from zero to infinity showing so that ideas introduced in a popular DIRECT method can be used in the H\"{o}lder global optimization. Convergence conditions of the resulting deterministic global optimization method are established. Numerical experiments carried out on several hundreds of test functions show quite a promising performance of the new algorithm in comparison with its direct competitors.Comment: 26 pages, 10 figures, 4 table

    Structure-Aware Sampling: Flexible and Accurate Summarization

    Full text link
    In processing large quantities of data, a fundamental problem is to obtain a summary which supports approximate query answering. Random sampling yields flexible summaries which naturally support subset-sum queries with unbiased estimators and well-understood confidence bounds. Classic sample-based summaries, however, are designed for arbitrary subset queries and are oblivious to the structure in the set of keys. The particular structure, such as hierarchy, order, or product space (multi-dimensional), makes range queries much more relevant for most analysis of the data. Dedicated summarization algorithms for range-sum queries have also been extensively studied. They can outperform existing sampling schemes in terms of accuracy on range queries per summary size. Their accuracy, however, rapidly degrades when, as is often the case, the query spans multiple ranges. They are also less flexible - being targeted for range sum queries alone - and are often quite costly to build and use. In this paper we propose and evaluate variance optimal sampling schemes that are structure-aware. These summaries improve over the accuracy of existing structure-oblivious sampling schemes on range queries while retaining the benefits of sample-based summaries: flexible summaries, with high accuracy on both range queries and arbitrary subset queries

    Learning mixtures of structured distributions over discrete domains

    Full text link
    Let C\mathfrak{C} be a class of probability distributions over the discrete domain [n]={1,...,n}.[n] = \{1,...,n\}. We show that if C\mathfrak{C} satisfies a rather general condition -- essentially, that each distribution in C\mathfrak{C} can be well-approximated by a variable-width histogram with few bins -- then there is a highly efficient (both in terms of running time and sample complexity) algorithm that can learn any mixture of kk unknown distributions from C.\mathfrak{C}. We analyze several natural types of distributions over [n][n], including log-concave, monotone hazard rate and unimodal distributions, and show that they have the required structural property of being well-approximated by a histogram with few bins. Applying our general algorithm, we obtain near-optimally efficient algorithms for all these mixture learning problems.Comment: preliminary full version of soda'13 pape
    corecore