2,993 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Enhanced AODV Routing Protocol Using Leader Election Algorithm

    Get PDF
    Failure of communication link in mobile ADHOC network is major issue. For the failure of link the performance of network is degraded. Due to mobility of mobile node brake the communication link and path of routing is failed. For the repairing of routing node used various algorithm such as leader election, distributed and selection algorithm. The failure of link decease the performance of routing protocol in mobile ad-hoc network, for the improvement of quality of service in mobile ad-hoc network various authors proposed a different model and method for prediction of link. The prediction of link decreases the failure rate of mobile node during communication. The leader election algorithm plays a major role in link failure prediction algorithm the process of link failure prediction implied in form of distributed node distribution. Proposed a new link stability prediction method based on current link-related or user-related information in shadowed environments. The modified protocol acquired the process of thresholds priority Oder on the basic of neighbor’s node. The selection of neighbor node deepens on the mode operation in three sections. According to order of state create cluster of priority of group. After creation of group calculate average threshold value and compare each group value with minimum threshold value and pass the control message for communication. Through this process mode of activation state of node is minimized the time of route establishment and maintenance. The selection of proper node in minimum time and other node in sleep mode the consumption of power is reduces. We modified SBRP protocol for selection of node during on demand request node according to sleep and activation mode of communication. Each node locally assigned priority value of node. For the evaluation of performance used network simulator NS-2.35. And simulate two protocol one is AODV-LE protocol, these protocol patch are available for the simulation purpose. And another protocol is AODV-LE-ME. AODV-LE-ME protocol is modified protocol of leader election protocol for the selection of mobile node during the communication. DOI: 10.17762/ijritcc2321-8169.15016

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    Improving relay based cellular networks performance in highly user congested and emergency situations

    Get PDF
    PhDRelay based cellular networks (RBCNs) are the technologies that incorporate multi-hop communication into traditional cellular networks. A RBCN can potentially support higher data rates, more stable radio coverage and more dynamic services. In reality, RBCNs still suffer from performance degradation in terms of high user congestion, base station failure and overloading in emergency situations. The focus of this thesis is to explore the potential to improve IEEE802.16j supported RBCN performance in user congestion and emergency situations using adjustments to the RF layer (by antenna adjustments or extensions using multi-hop) and cooperative adjustment algorithms, e.g. based on controlling frequency allocation centrally and using distributed approaches. The first part of this thesis designs and validates network reconfiguration algorithms for RBCN, including a cooperative antenna power control algorithm and a heuristic antenna tilting algorithm. The second part of this thesis investigates centralized and distributed dynamic frequency allocation for higher RBCN frequency efficiency, network resilience, and computation simplicity. It is demonstrated that these benefits mitigate user congestion and base station failure problems significantly. Additionally, interweaving coordinated dynamic frequency allocation and antenna tilting is investigated in order to obtain the benefits of both actions. The third part of this thesis incorporates Delay Tolerate Networking (DTN) technology into RBCN to let users self-organize to connect to functional base station through multi-hops supported by other users. Through the use of DTN, RBCN coverage and performance are improved. This thesis explores the augmentation of DTN routing protocols to let more un-covered users connect to base stations and improve network load balancin
    • …
    corecore