10,941 research outputs found

    Semi-Federated Learning of an Embedding Space Across Multiple Machine Clusters

    Get PDF
    Provided are systems and methods for privacy-preserving learning of a shared embedding space for data split across multiple separate clusters of computing machines. In one example, the multiple separate clusters of computing machines can correspond to multiple separate data silos

    Radio frequency fingerprint identification for Internet of Things: A survey

    Get PDF
    Radio frequency fingerprint (RFF) identification is a promising technique for identifying Internet of Things (IoT) devices. This paper presents a comprehensive survey on RFF identification, which covers various aspects ranging from related definitions to details of each stage in the identification process, namely signal preprocessing, RFF feature extraction, further processing, and RFF identification. Specifically, three main steps of preprocessing are summarized, including carrier frequency offset estimation, noise elimination, and channel cancellation. Besides, three kinds of RFFs are categorized, comprising I/Q signal-based, parameter-based, and transformation-based features. Meanwhile, feature fusion and feature dimension reduction are elaborated as two main further processing methods. Furthermore, a novel framework is established from the perspective of closed set and open set problems, and the related state-of-the-art methodologies are investigated, including approaches based on traditional machine learning, deep learning, and generative models. Additionally, we highlight the challenges faced by RFF identification and point out future research trends in this field

    Opportunities and risks of stochastic deep learning

    Get PDF
    This thesis studies opportunities and risks associated with stochasticity in deep learning that specifically manifest in the context of adversarial robustness and neural architecture search (NAS). On the one hand, opportunities arise because stochastic methods have a strong impact on robustness and generalisation, both from a theoretical and an empirical standpoint. In addition, they provide a framework for navigating non-differentiable search spaces, and for expressing data and model uncertainty. On the other hand, trade-offs (i.e., risks) that are coupled with these benefits need to be carefully considered. The three novel contributions that comprise the main body of this thesis are, by these standards, instances of opportunities and risks. In the context of adversarial robustness, our first contribution proves that the impact of an adversarial input perturbation on the output of a stochastic neural network (SNN) is theoretically bounded. Specifically, we demonstrate that SNNs are maximally robust when they achieve weight-covariance alignment, i.e., when the vectors of their classifier layer are aligned with the eigenvectors of that layer's covariance matrix. Based on our theoretical insights, we develop a novel SNN architecture with excellent empirical adversarial robustness and show that our theoretical guarantees also hold experimentally. Furthermore, we discover that SNNs partially owe their robustness to having a noisy loss landscape. Gradient-based adversaries find this landscape difficult to ascend during adversarial perturbation search, and therefore fail to create strong adversarial examples. We show that inducing a noisy loss landscape is not an effective defence mechanism, as it is easy to circumvent. To demonstrate that point, we develop a stochastic loss-smoothing extension to state-of-the-art gradient-based adversaries that allows them to attack successfully. Interestingly, our loss-smoothing extension can also (i) be successful against non-stochastic neural networks that defend by altering their loss landscape in different ways, and (ii) strengthen gradient-free adversaries. Our third and final contribution lies in the field of few-shot learning, where we develop a stochastic NAS method for adapting pre-trained neural networks to previously unseen classes, by observing only a few training examples of each new class. We determine that the adaptation of a pre-trained backbone is not as simple as adapting all of its parameters. In fact, adapting or fine-tuning the entire architecture is sub-optimal, as a lot of layers already encode knowledge optimally. Our NAS algorithm searches for the optimal subset of pre-trained parameters to be adapted or fine-tuned, which yields a significant improvement over the existing paradigm for few-shot adaptation

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    Explainable AI models for predicting drop coalescence in microfluidics device

    Get PDF
    In the field of chemical engineering, understanding the dynamics and probability of drop coalescence is not just an academic pursuit, but a critical requirement for advancing process design by applying energy only where it is needed to build necessary interfacial structures, increasing efficiency towards Net Zero manufacture. This research applies machine learning predictive models to unravel the sophisticated relationships embedded in the experimental data on drop coalescence in a microfluidics device. Through the deployment of SHapley Additive exPlanations values, critical features relevant to coalescence processes are consistently identified. Comprehensive feature ablation tests further delineate the robustness and susceptibility of each model. Furthermore, the incorporation of Local Interpretable Model-agnostic Explanations for local interpretability offers an elucidative perspective, clarifying the intricate decision-making mechanisms inherent to each model’s predictions. As a result, this research provides the relative importance of the features for the outcome of drop interactions. It also underscores the pivotal role of model interpretability in reinforcing confidence in machine learning predictions of complex physical phenomena that are central to chemical engineering applications

    CHAMMI: A benchmark for channel-adaptive models in microscopy imaging

    Full text link
    Most neural networks assume that input images have a fixed number of channels (three for RGB images). However, there are many settings where the number of channels may vary, such as microscopy images where the number of channels changes depending on instruments and experimental goals. Yet, there has not been a systemic attempt to create and evaluate neural networks that are invariant to the number and type of channels. As a result, trained models remain specific to individual studies and are hardly reusable for other microscopy settings. In this paper, we present a benchmark for investigating channel-adaptive models in microscopy imaging, which consists of 1) a dataset of varied-channel single-cell images, and 2) a biologically relevant evaluation framework. In addition, we adapted several existing techniques to create channel-adaptive models and compared their performance on this benchmark to fixed-channel, baseline models. We find that channel-adaptive models can generalize better to out-of-domain tasks and can be computationally efficient. We contribute a curated dataset (https://doi.org/10.5281/zenodo.7988357) and an evaluation API (https://github.com/broadinstitute/MorphEm.git) to facilitate objective comparisons in future research and applications.Comment: Accepted at NeurIPS Track on Datasets and Benchmarks, 202

    Principled Diverse Counterfactuals in Multilinear Models

    Get PDF
    Machine learning (ML) applications have automated numerous real-life tasks,improving both private and public life. However, the black-box nature of manystate-of-the-art models poses the challenge of model verification; how can onebe sure that the algorithm bases its decisions on the proper criteria, or that itdoes not discriminate against certain minority groups? In this paper we proposea way to generate diverse counterfactual explanations from multilinear models,a broad class which includes Random Forests, as well as Bayesian Networks.<br/

    Neuromodulatory effects on early visual signal processing

    Get PDF
    Understanding how the brain processes information and generates simple to complex behavior constitutes one of the core objectives in systems neuroscience. However, when studying different neural circuits, their dynamics and interactions researchers often assume fixed connectivity, overlooking a crucial factor - the effect of neuromodulators. Neuromodulators can modulate circuit activity depending on several aspects, such as different brain states or sensory contexts. Therefore, considering the modulatory effects of neuromodulators on the functionality of neural circuits is an indispensable step towards a more complete picture of the brain’s ability to process information. Generally, this issue affects all neural systems; hence this thesis tries to address this with an experimental and computational approach to resolve neuromodulatory effects on cell type-level in a well-define system, the mouse retina. In the first study, we established and applied a machine-learning-based classification algorithm to identify individual functional retinal ganglion cell types, which enabled detailed cell type-resolved analyses. We applied the classifier to newly acquired data of light-evoked retinal ganglion cell responses and successfully identified their functional types. Here, the cell type-resolved analysis revealed that a particular principle of efficient coding applies to all types in a similar way. In a second study, we focused on the issue of inter-experimental variability that can occur during the process of pooling datasets. As a result, further downstream analyses may be complicated by the subtle variations between the individual datasets. To tackle this, we proposed a theoretical framework based on an adversarial autoencoder with the objective to remove inter-experimental variability from the pooled dataset, while preserving the underlying biological signal of interest. In the last study of this thesis, we investigated the functional effects of the neuromodulator nitric oxide on the retinal output signal. To this end, we used our previously developed retinal ganglion cell type classifier to unravel type-specific effects and established a paired recording protocol to account for type-specific time-dependent effects. We found that certain retinal ganglion cell types showed adaptational type-specific changes and that nitric oxide had a distinct modulation of a particular group of retinal ganglion cells. In summary, I first present several experimental and computational methods that allow to study functional neuromodulatory effects on the retinal output signal in a cell type-resolved manner and, second, use these tools to demonstrate their feasibility to study the neuromodulator nitric oxide

    Addiction in context

    Get PDF
    The dissertation provides a comprehensive exploration of the interplay between social and cultural factors in substance use, specifically focusing on alcohol use disorder (AUD) and cannabis use disorder (CUD). It begins by introducing the concept of social plasticity, which posits that adolescents' susceptibility to AUD is influenced by their heightened sensitivity to their social environment, but this sensitivity increases the potential for recovery in the transition to adulthood.A series of studies delves into how social cues impact alcohol craving and consumption. One study using functional magnetic resonance imaging (fMRI) investigated social alcohol cue reactivity and its relationship to social drinking behavior, revealing increased craving but no significant change in brain activity in response to alcohol cues. Another fMRI study compared social processes in alcohol cue reactivity between adults and adolescents, showing age-related differences in how social attunement affects drinking behavior. Shifting focus to cannabis, this dissertation discusses how cultural factors, including norms, legal policies, and attitudes, influence cannabis use and processes underlying CUD. The research presented examined various facets of cannabis use, including how cannabinoid concentrations in hair correlate with self-reported use, the effects of cannabis and cigarette co-use on brain reactivity, and cross-cultural differences in CUD between Amsterdam and Texas. Furthermore, the evidence for the relationship between cannabis use, CUD, and mood disorders is reviewed, suggesting a bidirectional relationship, with cannabis use potentially preceding the onset of bipolar disorder and contributing to the development and worse prognosis of mood disorders and mood disorders leading to more cannabis use

    Applications of Deep Learning Models in Financial Forecasting

    Get PDF
    In financial markets, deep learning techniques sparked a revolution, reshaping conventional approaches and amplifying predictive capabilities. This thesis explored the applications of deep learning models to unravel insights and methodologies aimed at advancing financial forecasting. The crux of the research problem lies in the applications of predictive models within financial domains, characterised by high volatility and uncertainty. This thesis investigated the application of advanced deep-learning methodologies in the context of financial forecasting, addressing the challenges posed by the dynamic nature of financial markets. These challenges were tackled by exploring a range of techniques, including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), autoencoders (AEs), and variational autoencoders (VAEs), along with approaches such as encoding financial time series into images. Through analysis, methodologies such as transfer learning, convolutional neural networks, long short-term memory networks, generative modelling, and image encoding of time series data were examined. These methodologies collectively offered a comprehensive toolkit for extracting meaningful insights from financial data. The present work investigated the practicality of a deep learning CNN-LSTM model within the Directional Change framework to predict significant DC events—a task crucial for timely decisionmaking in financial markets. Furthermore, the potential of autoencoders and variational autoencoders to enhance financial forecasting accuracy and remove noise from financial time series data was explored. Leveraging their capacity within financial time series, these models offered promising avenues for improved data representation and subsequent forecasting. To further contribute to financial prediction capabilities, a deep multi-model was developed that harnessed the power of pre-trained computer vision models. This innovative approach aimed to predict the VVIX, utilising the cross-disciplinary synergy between computer vision and financial forecasting. By integrating knowledge from these domains, novel insights into the prediction of market volatility were provided
    • …
    corecore