388 research outputs found

    A Concurrency Control Method Based on Commitment Ordering in Mobile Databases

    Full text link
    Disconnection of mobile clients from server, in an unclear time and for an unknown duration, due to mobility of mobile clients, is the most important challenges for concurrency control in mobile database with client-server model. Applying pessimistic common classic methods of concurrency control (like 2pl) in mobile database leads to long duration blocking and increasing waiting time of transactions. Because of high rate of aborting transactions, optimistic methods aren`t appropriate in mobile database. In this article, OPCOT concurrency control algorithm is introduced based on optimistic concurrency control method. Reducing communications between mobile client and server, decreasing blocking rate and deadlock of transactions, and increasing concurrency degree are the most important motivation of using optimistic method as the basis method of OPCOT algorithm. To reduce abortion rate of transactions, in execution time of transactions` operators a timestamp is assigned to them. In other to checking commitment ordering property of scheduler, the assigned timestamp is used in server on time of commitment. In this article, serializability of OPCOT algorithm scheduler has been proved by using serializability graph. Results of evaluating simulation show that OPCOT algorithm decreases abortion rate and waiting time of transactions in compare to 2pl and optimistic algorithms.Comment: 15 pages, 13 figures, Journal: International Journal of Database Management Systems (IJDMS

    An Efficient Concurrency Control Technique for Mobile Database Environment

    Get PDF
    Day by day wireless networking technology and mobile computing devices are becoming more popular for their mobility as well as great functionality Now it is an extremely growing demand to process mobile transactions in mobile databases that allow mobile users to access and operate data anytime and anywhere irrespective of their physical positions Information is shared among multiple clients and can be modified by each client independently However for the assurance of timely access and correct results in concurrent mobile transactions concurrency control techniques CCT happen to be very difficult Due to the properties of Mobile databases e g inadequate bandwidth small processing capability unreliable communication mobility etc existing mobile database CCTs cannot employ effectively With the client-server model applying common classic pessimistic techniques of concurrency control like 2PL in mobile database leads to long duration Blocking and increasing waiting time of transactions Because of high rate of aborting transactions optimistic techniques aren t appropriate in mobile database as well This paper discusses the issues that need to be addressed when designing a CCT technique for Mobile databases analyses the existing scheme of CCT and justify their performance limitations A modified optimistic concurrency control scheme is proposed which is based on the number of data items cached amount of execution time and current load of the database server Experimental results show performance benefits such as increase in average response time and decrease in waiting time of the transaction

    Transactional concurrency control for resource constrained applications

    Get PDF
    PhD ThesisTransactions have long been used as a mechanism for ensuring the consistency of databases. Databases, and associated transactional approaches, have always been an active area of research as different application domains and computing architectures have placed ever more elaborate requirements on shared data access. As transactions typically provide consistency at the expense of timeliness (abort/retry) and resource (duplicate shared data and locking), there has been substantial efforts to limit these two aspects of transactions while still satisfying application requirements. In environments where clients are geographically distant from a database the consistency/performance trade-off becomes acute as any retrieval of data over a network is not only expensive, but relatively slow compared to co-located client/database systems. Furthermore, for battery powered clients the increased overhead of transactions can also be viewed as a significant power overhead. However, for all their drawbacks transactions do provide the data consistency that is a requirement for many application types. In this Thesis we explore the solution space related to timely transactional systems for remote clients and centralised databases with a focus on providing a solution, that, when compared to other's work in this domain: (a) maintains consistency; (b) lowers latency; (c) improves throughput. To achieve this we revisit a technique first developed to decrease disk access times via local caching of state (for aborted transactions) to tackle the problems prevalent in real-time databases. We demonstrate that such a technique (rerun) allows a significant change in the typical structure of a transaction (one never before considered, even in rerun systems). Such a change itself brings significant performance success not only in the traditional rerun local database solution space, but also in the distributed solution space. A byproduct of our improvements also, one can argue, brings about a "greener" solution as less time coupled with improved throughput affords improved battery life for mobile devices

    An Efficient Concurrency Control Technique for Mobile Database Environment

    Get PDF
    Day by day, wireless networking technology and mobile computing devices are becoming more popular for their mobility as well as great functionality. Now it is an extremely growing demand to process mobile transactions in mobile databases that allow mobile users to access and operate data anytime and anywhere, irrespective of their physical positions. Information is shared among multiple clients and can be modified by each client independently. However, for the assurance of timely access and correct results in concurrent mobile transactions, concurrency control techniques (CCT) happen to be very difficult. Due to the properties of Mobile databases e.g. inadequate bandwidth, small processing capability, unreliable communication, mobility etc. existing mobile database CCTs cannot employ effectively. With the client-server model, applying common classic pessimistic techniques of concurrency control (like 2PL) in mobile database leads to long duration Blocking and increasing waiting time of transactions. Because of high rate of aborting transactions, optimistic techniques aren`t appropriate in mobile database as well. This paper discusses the issues that need to be addressed when designing a CCT technique for Mobile databases, analyses the existing scheme of CCT and justify their performance limitations. A modified optimistic concurrency control scheme is proposed which is based on the number of data items cached, amount of execution time and current load of the database server. Experimental results show performance benefits, such as increase in average response time and decrease in waiting time of the transactions

    AN ENERGY-EFFICIENT CONCURRENCY CONTROL ALGORITHM FOR MOBILE AD-HOC NETWORK DATABASES

    Get PDF
    With the rapid growth of the wireless networking technology and mobile computing devices, there is an increasing demand for processing mobile database transactions in mission-critical applications such as disaster rescue and military operations that do not require a fixed infrastructure, so that mobile users can access and manipulate the database anytime and anywhere. A Mobile Ad-hoc Network (MANET) is a collection of mobile, wireless and battery-powered nodes without a fixed infrastructure; therefore it fits well in such applications. However, when a node runs out of energy or has insufficient energy to function, communication may fail, disconnections may happen, execution of transactions may be prolonged, and thus time-critical transactions may be aborted if they missed their deadlines. In order to guarantee timely and correct results for multiple concurrent transactions, energy-efficient database concurrency control (CC) techniques become critical. Due to the characteristics of MANET databases, existing CC algorithms cannot work effectively.In this dissertation, an energy-efficient CC algorithm, called Sequential Order with Dynamic Adjustment (SODA), is developed for mission-critical MANET databases in a clustered network architecture where nodes are divided into clusters, each of which has a node, called a cluster head, responsible for the processing of all nodes in the cluster. The cluster structure is constructed using a novel weighted clustering algorithm, called MEW (Mobility, Energy, and Workload), that uses node mobility, remaining energy and workload to group nodes into clusters and select cluster heads. In SODA, in order to conserve energy and balance energy consumption among servers so that the lifetime of the network is prolonged, cluster heads are elected to work as coordinating servers. SODA is based on optimistic CC to offer high transaction concurrency and avoid unbounded blocking time. It utilizes the sequential order of committed transactions to simplify the validation process and dynamically adjusts the sequential order of committed transactions to reduce transaction aborts and improve system throughput.Besides correctness proof and theoretical analysis, comprehensive simulation experiments were conducted to study the performance of MEW and SODA. The simulation results confirm that MEW prolongs the lifetime of MANETs and has a lower cluster head change rate and re-affiliation rate than the existing algorithm MOBIC. The simulation results also show the superiority of SODA over the existing techniques, SESAMO and S2PL, in terms of transaction abort rate, system throughput, total energy consumption by all servers, and degree of balancing energy consumption among servers

    The network is the database

    Get PDF
    Master'sMASTER OF SCIENC

    A framework for real time collaborative editing in a mobile replicated architecture

    Get PDF
    Mobile collaborative work is a developing sub-area of Computer Supported Collaborative Work (CSCW). The future of this field will be marked by a significant increase in mobile device usage as a tool for co-workers to cooperate, collaborate and work on a shared workspace in real-time to produce artefacts such as diagrams, text and graphics regardless of their geographical locations. A real-time collaboration editor can utilise a centralised or a replicated architecture. In a centralised architecture, a central server holds the shared document as well as manages the various aspects of the collaboration, such as the document consistency, ordering of updates, resolving conflicts and the session membership. Every user's action needs to be propagated to the central server, and the server will apply it to the document to ensure it results in the intended document state. Alternatively, a decentralised or replicated architecture can be used where there is no central server to store the shared document. Every participating site contains a copy of the shared document (replica) to work on separately. Using this architecture, every user's action needs to be broadcast to all participating sites so each site can update their replicas accordingly. The replicated architecture is attractive for such applications, especially in wireless and ad-hoc networks, since it does not rely on a central server and a user can continue to work on his or her own local document replica even during disconnection period. However, in the absence of a dedicated server, the collaboration is managed by individual devices. This presents challenges to implement collaborative editors in a replicated architecture, especially in a mobile network which is characterised by limited resource reliability and availability. This thesis addresses challenges and requirements to implement group editors in wireless ad-hoc network environments where resources are scarce and the network is significantly less stable and less robust than wired fixed networks. The major contribution of this thesis is a proposed framework that comprises the proposed algorithms and techniques to allow each device to manage the important aspects of collaboration such as document consistency, conflict handling and resolution, session membership and document partitioning. Firstly, the proposed document consistency algorithm ensures the document replicas held by each device are kept consistent despite the concurrent updates by the collaboration participants while taking into account the limited resource of mobile devices and mobile networks. Secondly, the proposed conflict management technique provides users with conflict status and information so that users can handle and resolve conflicts appropriately. Thirdly, the proposed membership management algorithm ensures all participants receive all necessary updates and allows users to join a currently active collaboration session. Fourthly, the proposed document partitioning algorithm provides flexibility for users to work on selected parts of the document and reduces the resource consumption. Finally, a basic implementation of the framework is presented to show how it can support a real time collaboration scenario

    Mobile Databases: a Selection of Open Issues and Research Directions

    Get PDF
    International audienceThis paper reports on the main results of a specific action on mobile databases conducted by CNRS in France from October 2001 to December 2002. The objective of this action was to review the state of progress in mobile databases and identify major research directions for the French database community. Rather than provide a survey of all important issues in mobile databases, this paper gives an outline of the directions in which the action participants are now engaged, namely: copy synchronization in disconnected computing, mobile transactions, database embedded in ultra-light devices, data confidentiality, P2P dissemination models and middleware adaptability
    corecore