100 research outputs found

    Design and Implementation of Efficient Algorithms for Wireless MIMO Communication Systems

    Full text link
    En la última década, uno de los avances tecnológicos más importantes que han hecho culminar la nueva generación de banda ancha inalámbrica es la comunicación mediante sistemas de múltiples entradas y múltiples salidas (MIMO). Las tecnologías MIMO han sido adoptadas por muchos estándares inalámbricos tales como LTE, WiMAS y WLAN. Esto se debe principalmente a su capacidad de aumentar la máxima velocidad de transmisión , junto con la fiabilidad alcanzada y la cobertura de las comunicaciones inalámbricas actuales sin la necesidad de ancho de banda extra ni de potencia de transmisión adicional. Sin embargo, las ventajas proporcionadas por los sistemas MIMO se producen a expensas de un aumento sustancial del coste de implementación de múltiples antenas y de la complejidad del receptor, la cual tiene un gran impacto sobre el consumo de energía. Por esta razón, el diseño de receptores de baja complejidad es un tema importante que se abordará a lo largo de esta tesis. En primer lugar, se investiga el uso de técnicas de preprocesado de la matriz de canal MIMO bien para disminuir el coste computacional de decodificadores óptimos o bien para mejorar las prestaciones de detectores subóptimos lineales, SIC o de búsqueda en árbol. Se presenta una descripción detallada de dos técnicas de preprocesado ampliamente utilizadas: el método de Lenstra, Lenstra, Lovasz (LLL) para lattice reduction (LR) y el algorimo VBLAST ZF-DFE. Tanto la complejidad como las prestaciones de ambos métodos se han evaluado y comparado entre sí. Además, se propone una implementación de bajo coste del algoritmo VBLAST ZF-DFE, la cual se incluye en la evaluación. En segundo lugar, se ha desarrollado un detector MIMO basado en búsqueda en árbol de baja complejidad, denominado detector K-Best de amplitud variable (VB K-Best). La idea principal de este método es aprovechar el impacto del número de condición de la matriz de canal sobre la detección de datos con el fin de disminuir la complejidad de los sistemasRoger Varea, S. (2012). Design and Implementation of Efficient Algorithms for Wireless MIMO Communication Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16562Palanci

    A Fast Sphere Decoding Algorithm for Rank Deficient MIMO Systems

    Get PDF
    The problem of rank deficient multiple input multiple out (MIMO) systems arises when the number of transmit antennas M is greater than number of receive antennas N or when the channel gains are strongly correlated. Most of the optimal algorithms that deal with uncoded rank-deficient (under-determined) V-BLAST MIMO systems (e.g. Damen ,Meraim and Belfiore) suffer from high complexity and large processing time. Recently, some new optimal algorithms were introduced with low complexity for small constellations like 4-QAM yet they still suffer from very high complexity and processing time with large constellations like the 16 QAM. In order to reduce the complexity and the processing time of the decoding algorithms, some suboptimal algorithms were introduced. One of the most efficient suboptimal solutions for this problem is based on the Minimum mean square error decision-feedback equalizer (MMSE-DFE) followed by either sphere decoder or fano decoder. The performance of these algorithms is shown to be a fraction of dB from the maximum likelihood decoders while offering outstanding reduction in complexity compared to the most efficient ML algorithms (e.g. Cui and Tellambura algorithm). These suboptimal algorithms employ a two stage approach. In the first stage, the channel is pre-processed to transform the original decoding problem into a simpler form which facilitates the search decoding step. The second stage is basically the application of the sphere decoding search algorithm in the case of MMSE-DFE sphere decoding step or Fano decoder in the case of MMSE-DFE Fano decoder. In this study, various algorithms which deal with rank deficient MIMO systems such as Damen,Meraim and Belfiore algorithm ,Dayal and Varansi algorithm, and Cui and Tellambura algorithm are discussed and compared. Moreover, the MMSE-DFE sphere decoding algorithm and MMSE-DFE fano decoding algorithm are applied on uncoded V-BLAST rank deficient MIMO systems. The optimality of MMSE-DFE sphere decoding algorithm is analyzed in the case of V-BLAST 4-QAM. Furthermore, Simulation results show that when these algorithms are extended to cover large constellations, their performance falls within a fraction of dB behind the ML while achieving a significant decrease in the processing time by more than an order of magnitude when compared to the leas

    Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms for MIMO Systems

    Full text link
    In this work, decision feedback (DF) detection algorithms based on multiple processing branches for multi-input multi-output (MIMO) spatial multiplexing systems are proposed. The proposed detector employs multiple cancellation branches with receive filters that are obtained from a common matrix inverse and achieves a performance close to the maximum likelihood detector (MLD). Constrained minimum mean-squared error (MMSE) receive filters designed with constraints on the shape and magnitude of the feedback filters for the multi-branch MMSE DF (MB-MMSE-DF) receivers are presented. An adaptive implementation of the proposed MB-MMSE-DF detector is developed along with a recursive least squares-type algorithm for estimating the parameters of the receive filters when the channel is time-varying. A soft-output version of the MB-MMSE-DF detector is also proposed as a component of an iterative detection and decoding receiver structure. A computational complexity analysis shows that the MB-MMSE-DF detector does not require a significant additional complexity over the conventional MMSE-DF detector, whereas a diversity analysis discusses the diversity order achieved by the MB-MMSE-DF detector. Simulation results show that the MB-MMSE-DF detector achieves a performance superior to existing suboptimal detectors and close to the MLD, while requiring significantly lower complexity.Comment: 10 figures, 3 tables; IEEE Transactions on Wireless Communications, 201

    Low-Complexity Near-Optimal Detection Algorithms for MIMO Systems

    Get PDF
    As the number of subscribers in wireless networks and their demanding data rate are exponentially increasing, multiple-input multiple-output (MIMO) systems have been scaled up in the 5G where tens to hundreds of antennas are deployed at base stations (BSs). However, by scaling up the MIMO systems, designing detectors with low computational complexity and close to the optimal error performance becomes challenging. In this dissertation, we study the problem of efficient detector designs for MIMO systems. In Chapter 2, we propose efficient detection algorithms for small and moderate MIMO systems by using lattice reduction and subspace (or conditional) detection techniques. The proposed algorithms exhibit full receive diversity and approach the bit error rate (BER) of the optimal maximum likelihood (ML) solution. For quasi-static channels, the complexity of the proposed schemes is cubic in the system dimension and is only linear in the size of the QAM modulation used. However, the computational complexity of lattice reduction algorithms imposes a large burden on the proposed detectors for large MIMO systems or fast fading channels. In Chapter 3, we propose detectors for large MIMO systems based on the combination of minimum mean square error decision feedback equalization (MMSE-DFE) and subspace detection tailored to an appropriate channel ordering. Although the achieved diversity order of the proposed detectors does not necessarily equal the full receive diversity for some MIMO systems, the coding gain allows for close to ML error performance at practical values of signal-to-noise ratio (SNR) at the cost of a small computational complexity increase over the classical MMSE- DFE detection. The receive diversity deficiency is addressed by proposing another algorithm in which a partial lattice reduction (PLR) technique is deployed to improve the diversity order. Massive multiuser MIMO (MU-MIMO) is another technology where the BS is equipped with hundreds of antennas and serves tens of single-antenna user terminals (UTs). For the uplink of massive MIMO systems, linear detectors, such as zero-forcing (ZF) and minimum mean square error (MMSE), approach the error performances of sophisticated nonlinear detectors. However, the exact solutions of ZF and MMSE involve matrix-matrix multiplication and matrix inversion operations which are expensive for massive MIMO systems. In Chapter 4, we propose efficient truncated polynomial expansion (TPE)-based detectors that achieve the error performance of the exact solutions with a computational complexity proportional to the system dimensions. The millimeter wave (mmWave) massive MIMO is another key technology for 5G cellular networks. By using hybrid beamforming techniques in which a few numbers of radio frequency (RF) chains are deployed at the BSs and the UTs, the fully-digital precoder (combiner) is approximated as a product of analog and digital precoders (combiners). In Chapter 5, we consider a signal detection scheme using the equivalent channel consisting of the precoder, mmWave channel, and combiner. The available structure in the equivalent channel enables us to achieve the BER of the optimal ML solution with a significant reduction in the computational complexity
    • …
    corecore