156,691 research outputs found

    Online Learning of k-CNF Boolean Functions

    Full text link
    This paper revisits the problem of learning a k-CNF Boolean function from examples in the context of online learning under the logarithmic loss. In doing so, we give a Bayesian interpretation to one of Valiant's celebrated PAC learning algorithms, which we then build upon to derive two efficient, online, probabilistic, supervised learning algorithms for predicting the output of an unknown k-CNF Boolean function. We analyze the loss of our methods, and show that the cumulative log-loss can be upper bounded, ignoring logarithmic factors, by a polynomial function of the size of each example.Comment: 20 LaTeX pages. 2 Algorithms. Some Theorem

    Universal Codes from Switching Strategies

    Get PDF
    We discuss algorithms for combining sequential prediction strategies, a task which can be viewed as a natural generalisation of the concept of universal coding. We describe a graphical language based on Hidden Markov Models for defining prediction strategies, and we provide both existing and new models as examples. The models include efficient, parameterless models for switching between the input strategies over time, including a model for the case where switches tend to occur in clusters, and finally a new model for the scenario where the prediction strategies have a known relationship, and where jumps are typically between strongly related ones. This last model is relevant for coding time series data where parameter drift is expected. As theoretical ontributions we introduce an interpolation construction that is useful in the development and analysis of new algorithms, and we establish a new sophisticated lemma for analysing the individual sequence regret of parameterised models

    On similarity prediction and pairwise clustering

    Get PDF
    We consider the problem of clustering a finite set of items from pairwise similarity information. Unlike what is done in the literature on this subject, we do so in a passive learning setting, and with no specific constraints on the cluster shapes other than their size. We investigate the problem in different settings: i. an online setting, where we provide a tight characterization of the prediction complexity in the mistake bound model, and ii. a standard stochastic batch setting, where we give tight upper and lower bounds on the achievable generalization error. Prediction performance is measured both in terms of the ability to recover the similarity function encoding the hidden clustering and in terms of how well we classify each item within the set. The proposed algorithms are time efficient

    Second-order Quantile Methods for Experts and Combinatorial Games

    Get PDF
    We aim to design strategies for sequential decision making that adjust to the difficulty of the learning problem. We study this question both in the setting of prediction with expert advice, and for more general combinatorial decision tasks. We are not satisfied with just guaranteeing minimax regret rates, but we want our algorithms to perform significantly better on easy data. Two popular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The underlying notions of 'easy data', which may be paraphrased as "the learning problem has small variance" and "multiple decisions are useful", are synergetic. But even though there are sophisticated algorithms that exploit one of the two, no existing algorithm is able to adapt to both. In this paper we outline a new method for obtaining such adaptive algorithms, based on a potential function that aggregates a range of learning rates (which are essential tuning parameters). By choosing the right prior we construct efficient algorithms and show that they reap both benefits by proving the first bounds that are both second-order and incorporate quantiles

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    Online Isotonic Regression

    Get PDF
    We consider the online version of the isotonic regression problem. Given a set of linearly ordered points (e.g., on the real line), the learner must predict labels sequentially at adversarially chosen positions and is evaluated by her total squared loss compared against the best isotonic (non-decreasing) function in hindsight. We survey several standard online learning algorithms and show that none of them achieve the optimal regret exponent; in fact, most of them (including Online Gradient Descent, Follow the Leader and Exponential Weights) incur linear regret. We then prove that the Exponential Weights algorithm played over a covering net of isotonic functions has a regret bounded by O(T1/3log2/3(T))O\big(T^{1/3} \log^{2/3}(T)\big) and present a matching Ω(T1/3)\Omega(T^{1/3}) lower bound on regret. We provide a computationally efficient version of this algorithm. We also analyze the noise-free case, in which the revealed labels are isotonic, and show that the bound can be improved to O(logT)O(\log T) or even to O(1)O(1) (when the labels are revealed in isotonic order). Finally, we extend the analysis beyond squared loss and give bounds for entropic loss and absolute loss.Comment: 25 page
    corecore