7,553 research outputs found

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Deep Learning Techniques for Electroencephalography Analysis

    Get PDF
    In this thesis we design deep learning techniques for training deep neural networks on electroencephalography (EEG) data and in particular on two problems, namely EEG-based motor imagery decoding and EEG-based affect recognition, addressing challenges associated with them. Regarding the problem of motor imagery (MI) decoding, we first consider the various kinds of domain shifts in the EEG signals, caused by inter-individual differences (e.g. brain anatomy, personality and cognitive profile). These domain shifts render multi-subject training a challenging task and impede robust cross-subject generalization. We build a two-stage model ensemble architecture and propose two objectives to train it, combining the strengths of curriculum learning and collaborative training. Our subject-independent experiments on the large datasets of Physionet and OpenBMI, verify the effectiveness of our approach. Next, we explore the utilization of the spatial covariance of EEG signals through alignment techniques, with the goal of learning domain-invariant representations. We introduce a Riemannian framework that concurrently performs covariance-based signal alignment and data augmentation, while training a convolutional neural network (CNN) on EEG time-series. Experiments on the BCI IV-2a dataset show that our method performs superiorly over traditional alignment, by inducing regularization to the weights of the CNN. We also study the problem of EEG-based affect recognition, inspired by works suggesting that emotions can be expressed in relative terms, i.e. through ordinal comparisons between different affective state levels. We propose treating data samples in a pairwise manner to infer the ordinal relation between their corresponding affective state labels, as an auxiliary training objective. We incorporate our objective in a deep network architecture which we jointly train on the tasks of sample-wise classification and pairwise ordinal ranking. We evaluate our method on the affective datasets of DEAP and SEED and obtain performance improvements over deep networks trained without the additional ranking objective

    Forschungsbericht / Hochschule Mittweida

    Get PDF

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    Improving diagnostic procedures for epilepsy through automated recording and analysis of patients’ history

    Get PDF
    Transient loss of consciousness (TLOC) is a time-limited state of profound cognitive impairment characterised by amnesia, abnormal motor control, loss of responsiveness, a short duration and complete recovery. Most instances of TLOC are caused by one of three health conditions: epilepsy, functional (dissociative) seizures (FDS), or syncope. There is often a delay before the correct diagnosis is made and 10-20% of individuals initially receive an incorrect diagnosis. Clinical decision tools based on the endorsement of TLOC symptom lists have been limited to distinguishing between two causes of TLOC. The Initial Paroxysmal Event Profile (iPEP) has shown promise but was demonstrated to have greater accuracy in distinguishing between syncope and epilepsy or FDS than between epilepsy and FDS. The objective of this thesis was to investigate whether interactional, linguistic, and communicative differences in how people with epilepsy and people with FDS describe their experiences of TLOC can improve the predictive performance of the iPEP. An online web application was designed that collected information about TLOC symptoms and medical history from patients and witnesses using a binary questionnaire and verbal interaction with a virtual agent. We explored potential methods of automatically detecting these communicative differences, whether the differences were present during an interaction with a VA, to what extent these automatically detectable communicative differences improve the performance of the iPEP, and the acceptability of the application from the perspective of patients and witnesses. The two feature sets that were applied to previous doctor-patient interactions, features designed to measure formulation effort or detect semantic differences between the two groups, were able to predict the diagnosis with an accuracy of 71% and 81%, respectively. Individuals with epilepsy or FDS provided descriptions of TLOC to the VA that were qualitatively like those observed in previous research. Both feature sets were effective predictors of the diagnosis when applied to the web application recordings (85.7% and 85.7%). Overall, the accuracy of machine learning models trained for the threeway classification between epilepsy, FDS, and syncope using the iPEP responses from patients that were collected through the web application was worse than the performance observed in previous research (65.8% vs 78.3%), but the performance was increased by the inclusion of features extracted from the spoken descriptions on TLOC (85.5%). Finally, most participants who provided feedback reported that the online application was acceptable. These findings suggest that it is feasible to differentiate between people with epilepsy and people with FDS using an automated analysis of spoken seizure descriptions. Furthermore, incorporating these features into a clinical decision tool for TLOC can improve the predictive performance by improving the differential diagnosis between these two health conditions. Future research should use the feedback to improve the design of the application and increase perceived acceptability of the approach

    Audio-Visual Deception Detection: DOLOS Dataset and Parameter-Efficient Crossmodal Learning

    Full text link
    Deception detection in conversations is a challenging yet important task, having pivotal applications in many fields such as credibility assessment in business, multimedia anti-frauds, and custom security. Despite this, deception detection research is hindered by the lack of high-quality deception datasets, as well as the difficulties of learning multimodal features effectively. To address this issue, we introduce DOLOS\footnote {The name ``DOLOS" comes from Greek mythology.}, the largest gameshow deception detection dataset with rich deceptive conversations. DOLOS includes 1,675 video clips featuring 213 subjects, and it has been labeled with audio-visual feature annotations. We provide train-test, duration, and gender protocols to investigate the impact of different factors. We benchmark our dataset on previously proposed deception detection approaches. To further improve the performance by fine-tuning fewer parameters, we propose Parameter-Efficient Crossmodal Learning (PECL), where a Uniform Temporal Adapter (UT-Adapter) explores temporal attention in transformer-based architectures, and a crossmodal fusion module, Plug-in Audio-Visual Fusion (PAVF), combines crossmodal information from audio-visual features. Based on the rich fine-grained audio-visual annotations on DOLOS, we also exploit multi-task learning to enhance performance by concurrently predicting deception and audio-visual features. Experimental results demonstrate the desired quality of the DOLOS dataset and the effectiveness of the PECL. The DOLOS dataset and the source codes are available at https://github.com/NMS05/Audio-Visual-Deception-Detection-DOLOS-Dataset-and-Parameter-Efficient-Crossmodal-Learning/tree/main.Comment: 11 pages, 6 figure

    Fairness Testing: A Comprehensive Survey and Analysis of Trends

    Full text link
    Unfair behaviors of Machine Learning (ML) software have garnered increasing attention and concern among software engineers. To tackle this issue, extensive research has been dedicated to conducting fairness testing of ML software, and this paper offers a comprehensive survey of existing studies in this field. We collect 100 papers and organize them based on the testing workflow (i.e., how to test) and testing components (i.e., what to test). Furthermore, we analyze the research focus, trends, and promising directions in the realm of fairness testing. We also identify widely-adopted datasets and open-source tools for fairness testing

    Fuzzy Natural Logic in IFSA-EUSFLAT 2021

    Get PDF
    The present book contains five papers accepted and published in the Special Issue, “Fuzzy Natural Logic in IFSA-EUSFLAT 2021”, of the journal Mathematics (MDPI). These papers are extended versions of the contributions presented in the conference “The 19th World Congress of the International Fuzzy Systems Association and the 12th Conference of the European Society for Fuzzy Logic and Technology jointly with the AGOP, IJCRS, and FQAS conferences”, which took place in Bratislava (Slovakia) from September 19 to September 24, 2021. Fuzzy Natural Logic (FNL) is a system of mathematical fuzzy logic theories that enables us to model natural language terms and rules while accounting for their inherent vagueness and allows us to reason and argue using the tools developed in them. FNL includes, among others, the theory of evaluative linguistic expressions (e.g., small, very large, etc.), the theory of fuzzy and intermediate quantifiers (e.g., most, few, many, etc.), and the theory of fuzzy/linguistic IF–THEN rules and logical inference. The papers in this Special Issue use the various aspects and concepts of FNL mentioned above and apply them to a wide range of problems both theoretically and practically oriented. This book will be of interest for researchers working in the areas of fuzzy logic, applied linguistics, generalized quantifiers, and their applications

    XAIR: A Framework of Explainable AI in Augmented Reality

    Full text link
    Explainable AI (XAI) has established itself as an important component of AI-driven interactive systems. With Augmented Reality (AR) becoming more integrated in daily lives, the role of XAI also becomes essential in AR because end-users will frequently interact with intelligent services. However, it is unclear how to design effective XAI experiences for AR. We propose XAIR, a design framework that addresses "when", "what", and "how" to provide explanations of AI output in AR. The framework was based on a multi-disciplinary literature review of XAI and HCI research, a large-scale survey probing 500+ end-users' preferences for AR-based explanations, and three workshops with 12 experts collecting their insights about XAI design in AR. XAIR's utility and effectiveness was verified via a study with 10 designers and another study with 12 end-users. XAIR can provide guidelines for designers, inspiring them to identify new design opportunities and achieve effective XAI designs in AR.Comment: Proceedings of the 2023 CHI Conference on Human Factors in Computing System

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports
    • 

    corecore