2,756 research outputs found

    Efficient One-Way Secret-Key Agreement and Private Channel Coding via Polarization

    Full text link
    We introduce explicit schemes based on the polarization phenomenon for the tasks of one-way secret key agreement from common randomness and private channel coding. For the former task, we show how to use common randomness and insecure one-way communication to obtain a strongly secure key such that the key construction has a complexity essentially linear in the blocklength and the rate at which the key is produced is optimal, i.e., equal to the one-way secret-key rate. For the latter task, we present a private channel coding scheme that achieves the secrecy capacity using the condition of strong secrecy and whose encoding and decoding complexity are again essentially linear in the blocklength.Comment: 18.1 pages, 2 figures, 2 table

    Quantum Cryptography

    Get PDF
    Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Polar Coding for Secret-Key Generation

    Full text link
    Practical implementations of secret-key generation are often based on sequential strategies, which handle reliability and secrecy in two successive steps, called reconciliation and privacy amplification. In this paper, we propose an alternative approach based on polar codes that jointly deals with reliability and secrecy. Specifically, we propose secret-key capacity-achieving polar coding schemes for the following models: (i) the degraded binary memoryless source (DBMS) model with rate-unlimited public communication, (ii) the DBMS model with one-way rate-limited public communication, (iii) the 1-to-m broadcast model and (iv) the Markov tree model with uniform marginals. For models (i) and (ii) our coding schemes remain valid for non-degraded sources, although they may not achieve the secret-key capacity. For models (i), (ii) and (iii), our schemes rely on pre-shared secret seed of negligible rate; however, we provide special cases of these models for which no seed is required. Finally, we show an application of our results to secrecy and privacy for biometric systems. We thus provide the first examples of low-complexity secret-key capacity-achieving schemes that are able to handle vector quantization for model (ii), or multiterminal communication for models (iii) and (iv).Comment: 26 pages, 9 figures, accepted to IEEE Transactions on Information Theory; parts of the results were presented at the 2013 IEEE Information Theory Worksho

    Strong secrecy on a class of degraded broadcast channels using polar codes

    Get PDF
    Two polar coding schemes are proposed for the degraded broadcast channel under different reliability and secrecy requirements. In these settings, the transmitter wishes to send multiple messages to a set of legitimate receivers keeping them masked from a set of eavesdroppers, and individual channels are assumed to gradually degrade in such a way that each legitimate receiver has a better channel than any eavesdropper. The layered decoding structure requires receivers with better channel quality to reliably decode more messages, while the layered secrecy structure requires eavesdroppers with worse channel quality to be kept ignorant of more messages.Postprint (author's final draft

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Fundamental rate-loss tradeoff for optical quantum key distribution

    Get PDF
    Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are yet-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. We show that the secret-key-agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret-key-agreement capacity of optical channels---a long-standing open problem in optical quantum information theory---and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.Comment: 9+4 pages, 3 figures. arXiv admin note: text overlap with arXiv:1310.012
    • …
    corecore