652 research outputs found

    A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation

    Full text link
    We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier- Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is uncondition- ally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the weak coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme

    Convergence Analysis and Error Estimates for a Second Order Accurate Finite Element Method for the Cahn-Hilliard-Navier-Stokes System

    Get PDF
    In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and a trapezoidal rule are included to help preserve the energy stability natural to the Cahn-Hilliard equation. We show that our scheme is unconditionally energy stable with respect to a modification of the continuous free energy of the PDE system. Specifically, the discrete phase variable is shown to be bounded in ℓ∞(0,T;L∞)\ell^\infty \left(0,T;L^\infty\right) and the discrete chemical potential bounded in ℓ∞(0,T;L2)\ell^\infty \left(0,T;L^2\right), for any time and space step sizes, in two and three dimensions, and for any finite final time TT. We subsequently prove that these variables along with the fluid velocity converge with optimal rates in the appropriate energy norms in both two and three dimensions.Comment: 33 pages. arXiv admin note: text overlap with arXiv:1411.524

    A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects

    Get PDF
    In this paper, we develop a phase-field model for binary incompressible (quasi-incompressible) fluid with thermocapillary effects, which allows for the different properties (densities, viscosities and heat conductivities) of each component while maintaining thermodynamic consistency. The governing equations of the model including the Navier-Stokes equations with additional stress term, Cahn-Hilliard equations and energy balance equation are derived within a thermodynamic framework based on entropy generation, which guarantees thermodynamic consistency. A sharp-interface limit analysis is carried out to show that the interfacial conditions of the classical sharp-interface models can be recovered from our phase-field model. Moreover, some numerical examples including thermocapillary convections in a two-layer fluid system and thermocapillary migration of a drop are computed using a continuous finite element method. The results are compared to the corresponding analytical solutions and the existing numerical results as validations for our model
    • …
    corecore