207 research outputs found

    Connected subgraph detection with mirror descent on SDPs

    Full text link
    We propose a novel, computationally efficient mirror-descent based optimization framework for subgraph detection in graph-structured data. Our aim is to discover anomalous patterns present in a connected subgraph of a given graph. This problem arises in many applications such as detection of network intrusions, community detection, detection of anomalous events in surveillance videos or disease outbreaks. Since optimization over connected subgraphs is a combinatorial and computationally difficult problem, we propose a convex relaxation that offers a principled approach to incorporating connectivity and conductance constraints on candidate subgraphs. We develop a novel efficient algorithm to solve the relaxed problem, establish convergence guarantees and demonstrate its feasibility and performance with experiments on real and very large simulated networks.http://proceedings.mlr.press/v70/aksoylar17a.htmlhttp://proceedings.mlr.press/v70/aksoylar17a/aksoylar17a.pdfhttp://proceedings.mlr.press/v70/aksoylar17a/aksoylar17a.pdfPublished versio

    Automatic Segmentation of Cells of Different Types in Fluorescence Microscopy Images

    Get PDF
    Recognition of different cell compartments, types of cells, and their interactions is a critical aspect of quantitative cell biology. This provides a valuable insight for understanding cellular and subcellular interactions and mechanisms of biological processes, such as cancer cell dissemination, organ development and wound healing. Quantitative analysis of cell images is also the mainstay of numerous clinical diagnostic and grading procedures, for example in cancer, immunological, infectious, heart and lung disease. Computer automation of cellular biological samples quantification requires segmenting different cellular and sub-cellular structures in microscopy images. However, automating this problem has proven to be non-trivial, and requires solving multi-class image segmentation tasks that are challenging owing to the high similarity of objects from different classes and irregularly shaped structures. This thesis focuses on the development and application of probabilistic graphical models to multi-class cell segmentation. Graphical models can improve the segmentation accuracy by their ability to exploit prior knowledge and model inter-class dependencies. Directed acyclic graphs, such as trees have been widely used to model top-down statistical dependencies as a prior for improved image segmentation. However, using trees, a few inter-class constraints can be captured. To overcome this limitation, polytree graphical models are proposed in this thesis that capture label proximity relations more naturally compared to tree-based approaches. Polytrees can effectively impose the prior knowledge on the inclusion of different classes by capturing both same-level and across-level dependencies. A novel recursive mechanism based on two-pass message passing is developed to efficiently calculate closed form posteriors of graph nodes on polytrees. Furthermore, since an accurate and sufficiently large ground truth is not always available for training segmentation algorithms, a weakly supervised framework is developed to employ polytrees for multi-class segmentation that reduces the need for training with the aid of modeling the prior knowledge during segmentation. Generating a hierarchical graph for the superpixels in the image, labels of nodes are inferred through a novel efficient message-passing algorithm and the model parameters are optimized with Expectation Maximization (EM). Results of evaluation on the segmentation of simulated data and multiple publicly available fluorescence microscopy datasets indicate the outperformance of the proposed method compared to state-of-the-art. The proposed method has also been assessed in predicting the possible segmentation error and has been shown to outperform trees. This can pave the way to calculate uncertainty measures on the resulting segmentation and guide subsequent segmentation refinement, which can be useful in the development of an interactive segmentation framework

    Computational models for image contour grouping

    Get PDF
    Contours are one dimensional curves which may correspond to meaningful entities such as object boundaries. Accurate contour detection will simplify many vision tasks such as object detection and image recognition. Due to the large variety of image content and contour topology, contours are often detected as edge fragments at first, followed by a second step known as {u0300}{u0300}contour grouping'' to connect them. Due to ambiguities in local image patches, contour grouping is essential for constructing globally coherent contour representation. This thesis aims to group contours so that they are consistent with human perception. We draw inspirations from Gestalt principles, which describe perceptual grouping ability of human vision system. In particular, our work is most relevant to the principles of closure, similarity, and past experiences. The first part of our contribution is a new computational model for contour closure. Most of existing contour grouping methods have focused on pixel-wise detection accuracy and ignored the psychological evidences for topological correctness. This chapter proposes a higher-order CRF model to achieve contour closure in the contour domain. We also propose an efficient inference method which is guaranteed to find integer solutions. Tested on the BSDS benchmark, our method achieves a superior contour grouping performance, comparable precision-recall curves, and more visually pleasant results. Our work makes progresses towards a better computational model of human perceptual grouping. The second part is an energy minimization framework for salient contour detection problem. Region cues such as color/texture homogeneity, and contour cues such as local contrast, are both useful for this task. In order to capture both kinds of cues in a joint energy function, topological consistency between both region and contour labels must be satisfied. Our technique makes use of the topological concept of winding numbers. By using a fast method for winding number computation, we find that a small number of linear constraints are sufficient for label consistency. Our method is instantiated by ratio-based energy functions. Due to cue integration, our method obtains improved results. User interaction can also be incorporated to further improve the results. The third part of our contribution is an efficient category-level image contour detector. The objective is to detect contours which most likely belong to a prescribed category. Our method, which is based on three levels of shape representation and non-parametric Bayesian learning, shows flexibility in learning from either human labeled edge images or unlabelled raw images. In both cases, our experiments obtain better contour detection results than competing methods. In addition, our training process is robust even with a considerable size of training samples. In contrast, state-of-the-art methods require more training samples, and often human interventions are required for new category training. Last but not least, in Chapter 7 we also show how to leverage contour information for symmetry detection. Our method is simple yet effective for detecting the symmetric axes of bilaterally symmetric objects in unsegmented natural scene images. Compared with methods based on feature points, our model can often produce better results for the images containing limited texture

    Efficient inference and learning in graphical models for multi-organ shape segmentation

    Get PDF
    This thesis explores the use of discriminatively trained deformable contour models (DCMs) for shape-based segmentation in medical images. We make contributions in two fronts: in the learning problem, where the model is trained from a set of annotated images, and in the inference problem, whose aim is to segment an image given a model. We demonstrate the merit of our techniques in a large X-Ray image segmentation benchmark, where we obtain systematic improvements in accuracy and speedups over the current state-of-the-art. For learning, we formulate training the DCM scoring function as large-margin structured prediction and construct a training objective that aims at giving the highest score to the ground-truth contour configuration. We incorporate a loss function adapted to DCM-based structured prediction. In particular, we consider training with the Mean Contour Distance (MCD) performance measure. Using this loss function during training amounts to scoring each candidate contour according to its Mean Contour Distance to the ground truth configuration. Training DCMs using structured prediction with the standard zero-one loss already outperforms the current state-of-the-art method [Seghers et al. 2007] on the considered medical benchmark [Shiraishi et al. 2000, van Ginneken et al. 2006]. We demonstrate that training with the MCD structured loss further improves over the generic zero-one loss results by a statistically significant amount. For inference, we propose efficient solvers adapted to combinatorial problems with discretized spatial variables. Our contributions are three-fold:first, we consider inference for loopy graphical models, making no assumption about the underlying graph topology. We use an efficient decomposition-coordination algorithm to solve the resulting optimization problem: we decompose the model’s graph into a set of open, chain-structured graphs. We employ the Alternating Direction Method of Multipliers (ADMM) to fix the potential inconsistencies of the individual solutions. Even-though ADMMis an approximate inference scheme, we show empirically that our implementation delivers the exact solution for the considered examples. Second,we accelerate optimization of chain-structured graphical models by using the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] couple dwith the pruning techniques developed in [Kokkinos 2011a]. We achieve a one order of magnitude speedup in average over the state-of-the-art technique based on Dynamic Programming (DP) coupled with Generalized DistanceTransforms (GDTs) [Felzenszwalb & Huttenlocher 2004]. Third, we incorporate the Hierarchical A∗ algorithm in the ADMM scheme to guarantee an efficient optimization of the underlying chain structured subproblems. The resulting algorithm is naturally adapted to solve the loss-augmented inference problem in structured prediction learning, and hence is used during training and inference. In Appendix A, we consider the case of 3D data and we develop an efficientmethod to find the mode of a 3D kernel density distribution. Our algorithm has guaranteed convergence to the global optimum, and scales logarithmically in the volume size by virtue of recursively subdividing the search space. We use this method to rapidly initialize 3D brain tumor segmentation where we demonstrate substantial acceleration with respect to a standard mean-shift implementation. In Appendix B, we describe in more details our extension of the Hierarchical A∗ search algorithm of [Felzenszwalb & Mcallester 2007] to inference on chain-structured graphs.Cette thèse explore l’utilisation des modèles de contours déformables pour la segmentation basée sur la forme des images médicales. Nous apportons des contributions sur deux fronts: dans le problème de l’apprentissage statistique, où le modèle est formé à partir d’un ensemble d’images annotées, et le problème de l’inférence, dont le but est de segmenter une image étant donnée un modèle. Nous démontrons le mérite de nos techniques sur une grande base d’images à rayons X, où nous obtenons des améliorations systématiques et des accélérations par rapport à la méthode de l’état de l’art. Concernant l’apprentissage, nous formulons la formation de la fonction de score des modèles de contours déformables en un problème de prédiction structurée à grande marge et construisons une fonction d’apprentissage qui vise à donner le plus haut score à la configuration vérité-terrain. Nous intégrons une fonction de perte adaptée à la prédiction structurée pour les modèles de contours déformables. En particulier, nous considérons l’apprentissage avec la mesure de performance consistant en la distance moyenne entre contours, comme une fonction de perte. L’utilisation de cette fonction de perte au cours de l’apprentissage revient à classer chaque contour candidat selon sa distance moyenne du contour vérité-terrain. Notre apprentissage des modèles de contours déformables en utilisant la prédiction structurée avec la fonction zéro-un de perte surpasse la méthode [Seghers et al. 2007] de référence sur la base d’images médicales considérée [Shiraishi et al. 2000, van Ginneken et al. 2006]. Nous démontrons que l’apprentissage avec la fonction de perte de distance moyenne entre contours améliore encore plus les résultats produits avec l’apprentissage utilisant la fonction zéro-un de perte et ce d’une quantité statistiquement significative.Concernant l’inférence, nous proposons des solveurs efficaces et adaptés aux problèmes combinatoires à variables spatiales discrétisées. Nos contributions sont triples: d’abord, nous considérons le problème d’inférence pour des modèles graphiques qui contiennent des boucles, ne faisant aucune hypothèse sur la topologie du graphe sous-jacent. Nous utilisons un algorithme de décomposition-coordination efficace pour résoudre le problème d’optimisation résultant: nous décomposons le graphe du modèle en un ensemble de sous-graphes en forme de chaines ouvertes. Nous employons la Méthode de direction alternée des multiplicateurs (ADMM) pour réparer les incohérences des solutions individuelles. Même si ADMM est une méthode d’inférence approximative, nous montrons empiriquement que notre implémentation fournit une solution exacte pour les exemples considérés. Deuxièmement, nous accélérons l’optimisation des modèles graphiques en forme de chaîne en utilisant l’algorithme de recherche hiérarchique A* [Felzenszwalb & Mcallester 2007] couplé avec les techniques d’élagage développés dans [Kokkinos 2011a]. Nous réalisons une accélération de 10 fois en moyenne par rapport à l’état de l’art qui est basé sur la programmation dynamique (DP) couplé avec les transformées de distances généralisées [Felzenszwalb & Huttenlocher 2004]. Troisièmement, nous intégrons A* dans le schéma d’ADMM pour garantir une optimisation efficace des sous-problèmes en forme de chaine. En outre, l’algorithme résultant est adapté pour résoudre les problèmes d’inférence augmentée par une fonction de perte qui se pose lors de l’apprentissage de prédiction des structure, et est donc utilisé lors de l’apprentissage et de l’inférence. [...

    BAYESIAN MODELING OF ANOMALIES DUE TO KNOWN AND UNKNOWN CAUSES

    Get PDF
    Bayesian modeling of unknown causes of events is an important and pervasive problem. However, it has received relatively little research attention. In general, an intelligent agent (or system) has only limited causal knowledge of the world. Therefore, the agent may well be experiencing the influences of causes outside its model. For example, a clinician may be seeing a patient with a virus that is new to humans; the HIV virus was at one time such an example. It is important that clinicians be able to recognize that a patient is presenting with an unknown disease. In general, intelligent agents (or systems) need to recognize under uncertainty when they are likely to be experiencing influences outside their realm of knowledge. This dissertation investigates Bayesian modeling of unknown causes of events in the context of disease-outbreak detection.The dissertation introduces a Bayesian approach that models and detects (1) known diseases (e.g., influenza and anthrax) by using informative prior probabilities, (2) unknown diseases (e.g., a new, highly contagious respiratory virus that has never been seen before) by using relatively non-informative prior probabilities and (3) partially-known diseases (e.g., a disease that has characteristics of an influenza-like illness) by using semi-informative prior probabilities. I report the results of simulation experiments which support that this modeling method can improve the detection of new disease outbreaks in a population. A key contribution of this dissertation is that it introduces a Bayesian approach for jointly modeling both known and unknown causes of events. Such modeling has broad applicability in artificial intelligence in general and biomedical informatics applications in particular, where the space of known causes of outcomes of interest is seldom complete

    Bayesian Polytrees With Learned Deep Features for Multi-Class Cell Segmentation.

    Get PDF
    The recognition of different cell compartments, the types of cells, and their interactions is a critical aspect of quantitative cell biology. However, automating this problem has proven to be non-trivial and requires solving multi-class image segmentation tasks that are challenging owing to the high similarity of objects from different classes and irregularly shaped structures. To alleviate this, graphical models are useful due to their ability to make use of prior knowledge and model inter-class dependences. Directed acyclic graphs, such as trees, have been widely used to model top-down statistical dependences as a prior for improved image segmentation. However, using trees, a few inter-class constraints can be captured. To overcome this limitation, we propose polytree graphical models that capture label proximity relations more naturally compared to tree-based approaches. A novel recursive mechanism based on two-pass message passing was developed to efficiently calculate closed-form posteriors of graph nodes on polytrees. The algorithm is evaluated on simulated data and on two publicly available fluorescence microscopy datasets, outperforming directed trees and three state-of-the-art convolutional neural networks, namely, SegNet, DeepLab, and PSPNet. Polytrees are shown to outperform directed trees in predicting segmentation error by highlighting areas in the segmented image that do not comply with prior knowledge. This paves the way to uncertainty measures on the resulting segmentation and guide subsequent segmentation refinement

    Discovery of low-dimensional structure in high-dimensional inference problems

    Full text link
    Many learning and inference problems involve high-dimensional data such as images, video or genomic data, which cannot be processed efficiently using conventional methods due to their dimensionality. However, high-dimensional data often exhibit an inherent low-dimensional structure, for instance they can often be represented sparsely in some basis or domain. The discovery of an underlying low-dimensional structure is important to develop more robust and efficient analysis and processing algorithms. The first part of the dissertation investigates the statistical complexity of sparse recovery problems, including sparse linear and nonlinear regression models, feature selection and graph estimation. We present a framework that unifies sparse recovery problems and construct an analogy to channel coding in classical information theory. We perform an information-theoretic analysis to derive bounds on the number of samples required to reliably recover sparsity patterns independent of any specific recovery algorithm. In particular, we show that sample complexity can be tightly characterized using a mutual information formula similar to channel coding results. Next, we derive major extensions to this framework, including dependent input variables and a lower bound for sequential adaptive recovery schemes, which helps determine whether adaptivity provides performance gains. We compute statistical complexity bounds for various sparse recovery problems, showing our analysis improves upon the existing bounds and leads to intuitive results for new applications. In the second part, we investigate methods for improving the computational complexity of subgraph detection in graph-structured data, where we aim to discover anomalous patterns present in a connected subgraph of a given graph. This problem arises in many applications such as detection of network intrusions, community detection, detection of anomalous events in surveillance videos or disease outbreaks. Since optimization over connected subgraphs is a combinatorial and computationally difficult problem, we propose a convex relaxation that offers a principled approach to incorporating connectivity and conductance constraints on candidate subgraphs. We develop a novel nearly-linear time algorithm to solve the relaxed problem, establish convergence and consistency guarantees and demonstrate its feasibility and performance with experiments on real networks
    • …
    corecore