9 research outputs found

    How to Share Secret Efficiently over Networks

    Get PDF
    In a secret-sharing scheme, the secret is shared among a set of shareholders, and it can be reconstructed if a quorum of these shareholders work together by releasing their secret shares. However, in many applications, it is undesirable for nonshareholders to learn the secret. In these cases, pairwise secure channels are needed among shareholders to exchange the shares. In other words, a shared key needs to be established between every pair of shareholders. But employing an additional key establishment protocol may make the secret-sharing schemes significantly more complicated. To solve this problem, we introduce a new type of secret-sharing, called protected secret-sharing (PSS), in which the shares possessed by shareholders not only can be used to reconstruct the original secret but also can be used to establish the shared keys between every pair of shareholders. Therefore, in the secret reconstruction phase, the recovered secret is only available to shareholders but not to nonshareholders. In this paper, an information theoretically secure PSS scheme is proposed, its security properties are analyzed, and its computational complexity is evaluated. Moreover, our proposed PSS scheme also can be applied to threshold cryptosystems to prevent nonshareholders from learning the output of the protocols

    A Study on Enhancement of the Security of the Routing Protocols in Adhoc Networks

    Get PDF
    An ad hoc wireless network is a set of wireless mobile nodes that self-configure to build a network without the requirement for any reputable infrastructure or backbone. Mobile nodes are utilized by the Ad hoc networks to facilitate effective communication beyond the wireless transmission range. As ad hoc networks do not impose any fixed infrastructure, it becomes very tough to handle network services with the available routing approaches, and this creates a number of problems in ensuring the security of the communication. Majority of the existing ad hoc protocols that deal with security issues depends on implicit trust relationships to route packets among participating nodes. The general security objectives like authentication, confidentiality, integrity,availability and nonrepudiation should not be compromised in any circumstances. Thus, security in ad hoc networks becomes an active area of research in the field of networking. There are various techniques available in the literature for providing security to the ad hoc networks. This paper focuses on analyzing the various routing protocols available in the literature for ad hoc network environment and its applications in security mechanisms

    Efficient, Reliable and Secure Distributed Protocols for MANETs

    Get PDF
    This thesis is divided into two parts. The first part explores the difficulties of bootstrapping and maintaining a security infrastructure for military Mobile Ad Hoc NETworks (MANETs). The assumed absence of dedicated infrastructural elements necessitates, that security services in ad hoc networks may be built from the ground up. We develop a cluster algorithm, incorporating a trust metric in the cluster head selection process to securely determine constituting nodes in a distributed Trust Authority (TA) for MANETs. Following this, we develop non-interactive key distribution protocols for the distribution of symmetric keys in MANETs. We explore the computational requirements of our protocols and simulate the key distribution process. The second part of this thesis builds upon the security infrastructure of the first part and examines two distributed protocols for MANETs. Firstly, we present a novel algorithm for enhancing the efficiency and robustness of distributed protocols for contacting TA nodes in MANETs. Our algorithm determines a quorum of trust authority nodes required for a distributed protocol run based upon a set of quality metrics, and establishes an efficient routing strategy to contact these nodes. Secondly, we present a probabilistic path authentication scheme based on message authentication codes (MACs). Our scheme minimises both communication and computation overhead in authenticating the path over which a stream of packets travels and facilitates the detection of adversarial nodes on the path

    A Study on Enhancement of the Security of the Routing Protocols in Adhoc Networks

    Get PDF
    An ad hoc wireless network is a set of wireless mobile nodes that self-configure to build a network without the requirement for any reputable infrastructure or backbone. Mobile nodes are utilized by the Ad hoc networks to facilitate effective communication beyond the wireless transmission range. As ad hoc networks do not impose any fixed infrastructure, it becomes very tough to handle network services with the available routing approaches, and this creates a number of problems in ensuring the security of the communication. Majority of the existing ad hoc protocols that deal with security issues depends on implicit trust relationships to route packets among participating nodes. The general security objectives like authentication, confidentiality, integrity,availability and nonrepudiation should not be compromised in any circumstances. Thus, security in ad hoc networks becomes an active area of research in the field of networking. There are various techniques available in the literature for providing security to the ad hoc networks. This paper focuses on analyzing the various routing protocols available in the literature for ad hoc network environment and its applications in security mechanisms

    Protected Secret Sharing and its Application to Threshold Cryptography

    Get PDF
    Title from PDF of title page, viewed April 19, 2017Thesis advisor: Lein HarnVitaIncludes bibliographical references (pages 36-40)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2016In the secret reconstruction of Shamir’s (t,n) secret sharing scheme (SS), shares released by shareholders need to be protected otherwise, non-shareholders can also obtain the secret. Key establishment protocol can establish pairwise keys for any pair of shareholders. Then, shareholders can use these pairwise keys to protect shares in the secret reconstruction process. However, adding a key establishment in the secret reconstruction slows down the process significantly. Shamir’s SS is based on a univariate polynomial. Shares generated by a bivariate polynomial enable pairwise keys to be shared between any pair of shareholders. But we proposed a new type of SS, called protected secret sharing scheme (PSS), in which shares of shareholders can not only be used to reconstruct the secret but also be used to protect the secrecy of shares in the secret reconstruction process. Thus, the recovered secret is only available to shareholders but not to non-shareholders. A basic (t,n) PSS based on a bivariate polynomial is proposed. Furthermore, we introduce to use this basic PSS in the applications of threshold cryptography. The PSS is unique since it protects the secrecy of the recovered secret in a very efficient way.Introduction -- Related work -- Our scheme -- Security analysis and performance -- Application to algorithms of threshold cryptography -- Conclusio

    Efficient Node Admission and Certificateless Secure Communication in Short-Lived MANETs

    No full text
    corecore