29,414 research outputs found

    Power Grid Network Evolutions for Local Energy Trading

    Full text link
    The shift towards an energy Grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the distribution infrastructure. Today it is a hierarchical one designed to deliver energy from large scale facilities to end-users. Tomorrow it will be a capillary infrastructure at the medium and Low Voltage levels that will support local energy trading among prosumers. In our previous work, we analyzed the Dutch Power Grid and made an initial analysis of the economic impact topological properties have on decentralized energy trading. In this paper, we go one step further and investigate how different networks topologies and growth models facilitate the emergence of a decentralized market. In particular, we show how the connectivity plays an important role in improving the properties of reliability and path-cost reduction. From the economic point of view, we estimate how the topological evolutions facilitate local electricity distribution, taking into account the main cost ingredient required for increasing network connectivity, i.e., the price of cabling

    Towards realistic artificial benchmark for community detection algorithms evaluation

    Full text link
    Assessing the partitioning performance of community detection algorithms is one of the most important issues in complex network analysis. Artificially generated networks are often used as benchmarks for this purpose. However, previous studies showed their level of realism have a significant effect on the algorithms performance. In this study, we adopt a thorough experimental approach to tackle this problem and investigate this effect. To assess the level of realism, we use consensual network topological properties. Based on the LFR method, the most realistic generative method to date, we propose two alternative random models to replace the Configuration Model originally used in this algorithm, in order to increase its realism. Experimental results show both modifications allow generating collections of community-structured artificial networks whose topological properties are closer to those encountered in real-world networks. Moreover, the results obtained with eleven popular community identification algorithms on these benchmarks show their performance decrease on more realistic networks

    Do the rich get richer? An empirical analysis of the BitCoin transaction network

    Get PDF
    The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random networks of interacting agents, and only macroscopic properties (e.g. the resulting wealth distribution) are compared to real-world data. In this paper, we analyze BitCoin, which is a novel digital currency system, where the complete list of transactions is publicly available. Using this dataset, we reconstruct the network of transactions, and extract the time and amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling relation between the degree and wealth associated to individual nodes.Comment: Project website: http://www.vo.elte.hu/bitcoin/; updated after publicatio

    Modeling the Internet's Large-Scale Topology

    Full text link
    Network generators that capture the Internet's large-scale topology are crucial for the development of efficient routing protocols and modeling Internet traffic. Our ability to design realistic generators is limited by the incomplete understanding of the fundamental driving forces that affect the Internet's evolution. By combining the most extensive data on the time evolution, topology and physical layout of the Internet, we identify the universal mechanisms that shape the Internet's router and autonomous system level topology. We find that the physical layout of nodes form a fractal set, determined by population density patterns around the globe. The placement of links is driven by competition between preferential attachment and linear distance dependence, a marked departure from the currently employed exponential laws. The universal parameters that we extract significantly restrict the class of potentially correct Internet models, and indicate that the networks created by all available topology generators are significantly different from the Internet
    • …
    corecore