74 research outputs found

    Low-complexity dominance-based Sphere Decoder for MIMO Systems

    Full text link
    The sphere decoder (SD) is an attractive low-complexity alternative to maximum likelihood (ML) detection in a variety of communication systems. It is also employed in multiple-input multiple-output (MIMO) systems where the computational complexity of the optimum detector grows exponentially with the number of transmit antennas. We propose an enhanced version of the SD based on an additional cost function derived from conditions on worst case interference, that we call dominance conditions. The proposed detector, the king sphere decoder (KSD), has a computational complexity that results to be not larger than the complexity of the sphere decoder and numerical simulations show that the complexity reduction is usually quite significant

    Lattice reduction and list based low complexity MIMO detection and its applications.

    Get PDF
    Multiple input multiple output (MIMO) is an important technique of improving the spectral efficiency in wireless communications. In MIMO systems, it is usually required to jointly detect signals at the receiver. While the maximum likelihood (ML) MIMO detection provides an optimal performance with full receive diversity, its complexity grows exponentially with the number of transmit antennas. Thus, lattice reduction (LR) and list based detectors are developed to reduce the complexity. In this thesis, we first apply the partial maximum a posteriori probability (PMAP) principle to the list-based method for MIMO detection. It shows that the PMAP-based list detection outperforms the conventional list detection with a reasonably low complexity. To further improve the performance for slow fading MIMO channels, we develop the column reordering criteria (CRC) for the LR-based list detection. It shows that with our proposed CRC, the LR,-based list detection can provide a near ML performance with a sufficiently low complexity. Then, we develop a complexity efficient pre-voting cancellation based detection with pre-voting vector selection criteria for underdetermined MIMO systems and show that this scheme can exploit a near ML performance with full receive diversity. An extension of MIMO systems is multiuser MIMO systems, where the user selection becomes an effective way to increase diversity (multiuser diversity). If multiple users are selected to access the channel at a time, the selection problem becomes a combinatorial problem, where an exhaustive search may leads to highly computational complexity. Therefore, we propose a low complexity greedy user selection scheme with an iterative LR updating algorithm when a LR-based MIMO detector is used. It shows that the proposed selection scheme can provide a comparable performance to the combinatorial ones with much lower complexity

    First look at average-case complexity for planar maximum-likelihood detection

    Get PDF
    In this paper, an efficient exact maximum-likelihood (ML) detection scheme is presented for a multiple-input singleoutput (MI SO) system with real signal constellations. The proposed technique has a geometrical interpretation of exploring the points jointly "close" in all coordinate axes around the decoding hyperplane and is therefore dubbed planar detection. The fact that the lattice points which are close in all coordinate axes are much less, leads to dramatic reduction in detection complexity. Making a few approximations, this paper derives the average-case complexity exponent, ec, for planar detection analytically in a closed form. Numerical results show that for an (n, 1) 1 system, although the expected complexity is still exponential, complexity reduction of 2 exponents, i.e., from ec to ec - 2, is realized and such advantage is promised irrespective of the size of the signal constellations and the received signal-to-noise ratio (SNR). © 2005 IEEE.published_or_final_versio

    Joint signal detection and channel estimation in rank-deficient MIMO systems

    Get PDF
    L'Ă©volution de la prospĂšre famille des standards 802.11 a encouragĂ© le dĂ©veloppement des technologies appliquĂ©es aux rĂ©seaux locaux sans fil (WLANs). Pour faire face Ă  la toujours croissante nĂ©cessitĂ© de rendre possible les communications Ă  trĂšs haut dĂ©bit, les systĂšmes Ă  antennes multiples (MIMO) sont une solution viable. Ils ont l'avantage d'accroĂźtre le dĂ©bit de transmission sans avoir recours Ă  plus de puissance ou de largeur de bande. Cependant, l'industrie hĂ©site encore Ă  augmenter le nombre d'antennes des portables et des accĂ©soires sans fil. De plus, Ă  l'intĂ©rieur des bĂątiments, la dĂ©ficience de rang de la matrice de canal peut se produire dĂ» Ă  la nature de la dispersion des parcours de propagation, ce phĂ©nomĂšne est aussi occasionnĂ© Ă  l'extĂ©rieur par de longues distances de transmission. Ce projet est motivĂ© par les raisons dĂ©crites antĂ©rieurement, il se veut un Ă©tude sur la viabilitĂ© des transcepteurs sans fil Ă  large bande capables de rĂ©gulariser la dĂ©ficience de rang du canal sans fil. On vise le dĂ©veloppement des techniques capables de sĂ©parer M signaux co-canal, mĂȘme avec une seule antenne et Ă  faire une estimation prĂ©cise du canal. Les solutions dĂ©crites dans ce document cherchent Ă  surmonter les difficultĂ©s posĂ©es par le medium aux transcepteurs sans fil Ă  large bande. Le rĂ©sultat de cette Ă©tude est un algorithme transcepteur appropriĂ© aux systĂšmes MIMO Ă  rang dĂ©ficient

    Twenty-five years of sensor array and multichannel signal processing: a review of progress to date and potential research directions

    Get PDF
    In this article, a general introduction to the area of sensor array and multichannel signal processing is provided, including associated activities of the IEEE Signal Processing Society (SPS) Sensor Array and Multichannel (SAM) Technical Committee (TC). The main technological advances in five SAM subareas made in the past 25 years are then presented in detail, including beamforming, direction-of-arrival (DOA) estimation, sensor location optimization, target/source localization based on sensor arrays, and multiple-input multiple-output (MIMO) arrays. Six recent developments are also provided at the end to indicate possible promising directions for future SAM research, which are graph signal processing (GSP) for sensor networks; tensor-based array signal processing, quaternion-valued array signal processing, 1-bit and noncoherent sensor array signal processing, machine learning and artificial intelligence (AI) for sensor arrays; and array signal processing for next-generation communication systems

    Analysis of Wireless Networks With Massive Connectivity

    Get PDF
    Recent years have witnessed unprecedented growth in wireless networks in terms of both data traffic and number of connected devices. How to support this fast increasing demand for high data traffic and connectivity is a key consideration in the design of future wireless communication systems. With this motivation, in this thesis, we focus on the analysis of wireless networks with massive connectivity. In the first part of the thesis, we seek to improve the energy efficiency (EE) of single-cell massive multiple-input multiple-output (MIMO) networks with joint antenna selection and user scheduling. We propose a two-step iterative procedure to maximize the EE. In each iteration, bisection search and random selection are used first to determine a subset of antennas with the users selected before, and then identify the EE-optimal subset of users with the selected antennas via cross entropy algorithm. Subsequently, we focus on the joint uplink and downlink EE maximization, under a limitation on the number of available radio frequency (RF) chains. With the Jensen\u27s inequality and the power consumption model, the original problem is converted into a combinatorial optimization problem. Utilizing the learning-based stochastic gradient descent framework and the rare event simulation method, we propose an efficient learning-based stochastic gradient descent algorithm to solve the corresponding combinatorial optimization problem. In the second part of the thesis, we focus on the joint activity detection and channel estimation in cell-free massive MIMO systems with massive connectivity. At first, we conduct an asymptotic analysis of single measurement vector (SMV) based minimum mean square error (MMSE) estimation in cell-free massive MIMO systems with massive connectivity. We establish a decoupling principle of SMV based MMSE estimation for sparse signal vectors with independent and non-identically distributed (i.n.i.d.) non-zero components. Subsequently, using the decoupling principle, likelihood ratio test and the optimal fusion rule, we obtain detection rules for the activity of users based on the received pilot signals at only one access point (AP), and also based on the cooperation of the received pilot signals from the entire set of APs for centralized and distributed detection. Moreover, we study the achievable uplink rates with zero-forcing (ZF) detector at the central processing unit (CPU) of the cell-free massive MIMO systems. In the third part, we focus on the performance analysis of intelligent reflecting surface (IRS) assisted wireless networks. Initially, we investigate the MMSE channel estimation for IRS assisted wireless communication systems. Then, we study the sparse activity detection problem in IRS assisted wireless networks. Specifically, employing the generalized approximate message passing (GAMP) algorithm, we obtain the MMSE estimates of the equivalent effective channel coefficients from the base station (BS) to all users, and transform the received pilot signals into additive Gaussian noise corrupted versions of the equivalent effective channel coefficients. Likelihood ratio test is used to acquire decisions on the activity of each user based on the Gaussian noise corrupted equivalent effective channel coefficients, and the optimal fusion rule is used to obtain the final decisions on the activity of all users based on the previous decisions on the activity of each user and the corresponding reliabilities. Finally, we conduct an asymptotic analysis of maximizing the weighted sum rate by joint beamforming and power allocation under transmit power and quality-of-service (QoS) constraints in IRS assisted wireless networks

    Blind Channel Estimation for STBC Systems Using Higher-Order Statistics

    No full text
    International audienceThis paper describes a new blind channel estimation algorithm for Space-Time Block Coded (STBC) systems. The proposed method exploits the statistical independence of sources before space-time encoding. The channel matrix is estimated by minimizing a kurtosis-based cost function after Zero-Forcing equalization. In contrast to subspace or Second-Order Statistics (SOS) approaches, the proposed method is more general since it can be employed for the general class of linear STBCs including Spatial Multiplexing, Orthogonal, quasi-Orthogonal and Non-Orthogonal STBCs. Furthermore, unlike other approaches, the method does not require any modification of the transmitter and, consequently, is well-suited for non-cooperative context. Numerical examples corroborate the performance of the proposed algorithm

    Super-resolved localisation in multipath environments

    Get PDF
    In the last few decades, the localisation problems have been studied extensively. There are still some open issues that remain unresolved. One of the key issues is the efficiency and preciseness of the localisation in presence of non-line-of-sight (NLoS) path. Nevertheless, the NLoS path has a high occurrence in multipath environments, but NLoS bias is viewed as a main factor to severely degrade the localisation performance. The NLoS bias would often result in extra propagation delay and angular bias. Numerous localisation methods have been proposed to deal with NLoS bias in various propagation environments, but they are tailored to some specif ic scenarios due to different prior knowledge requirements, accuracies, computational complexities, and assumptions. To super-resolve the location of mobile device (MD) without prior knowledge, we address the localisation problem by super-resolution technique due to its favourable features, such as working on continuous parameter space, reducing computational cost and good extensibility. Besides the NLoS bias, we consider an extra array directional error which implies the deviation in the orientation of the array placement. The proposed method is able to estimate the locations of MDs and self-calibrate the array directional errors simultaneously. To achieve joint localisation, we directly map MD locations and array directional error to received signals. Then the group sparsity based optimisation is proposed to exploit the geometric consistency that received paths are originating from common MDs. Note that the super-resolution framework cannot be directly applied to our localisation problems. Because the proposed objective function cannot be efficiently solved by semi-definite programming. Typical strategies focus on reducing adverse effect due to the NLoS bias by separating line-of-sight (LoS)/NLoS path or mitigating NLoS effect. The LoS path is well studied for localisation and multiple methods have been proposed in the literature. However, the number of LoS paths are typically limited and the effect of NLoS bias may not always be reduced completely. As a long-standing issue, the suitable solution of using NLoS path is still an open topic for research. Instead of dealing with NLoS bias, we present a novel localisation method that exploits both LoS and NLoS paths in the same manner. The unique feature is avoiding hard decisions on separating LoS and NLoS paths and hence relevant possible error. A grid-free sparse inverse problem is formulated for localisation which avoids error propagation between multiple stages, handles multipath in a unified way, and guarantees a global convergence. Extensive localisation experiments on different propagation environments and localisation systems are presented to illustrate the high performance of the proposed algorithm compared with theoretical analysis. In one of the case studies, single antenna access points (APs) can locate a single antenna MD even when all paths between them are NLoS, which according to the authors’ knowledge is the first time in the literature.Open Acces

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Sparse nonlinear optimization for signal processing and communications

    Get PDF
    This dissertation proposes three classes of new sparse nonlinear optimization algorithms for network echo cancellation (NEC), 3-D synthetic aperture radar (SAR) image reconstruction, and adaptive turbo equalization in multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications, respectively. For NEC, the proposed two proportionate affine projection sign algorithms (APSAs) utilize the sparse nature of the network impulse response (NIR). Benefiting from the characteristics of l₁-norm optimization, affine projection, and proportionate matrix, the new algorithms are more robust to impulsive interferences and colored input than the conventional adaptive algorithms. For 3-D SAR image reconstruction, the proposed two compressed sensing (CS) approaches exploit the sparse nature of the SAR holographic image. Combining CS with the range migration algorithms (RMAs), these approaches can decrease the load of data acquisition while recovering satisfactory 3-D SAR image through l₁-norm optimization. For MIMO UWA communications, a robust iterative channel estimation based minimum mean-square-error (MMSE) turbo equalizer is proposed for large MIMO detection. The MIMO channel estimation is performed jointly with the MMSE equalizer and the maximum a posteriori probability (MAP) decoder. The proposed MIMO detection scheme has been tested by experimental data and proved to be robust against tough MIMO channels. --Abstract, page iv
    • 

    corecore