4,202 research outputs found

    Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

    Get PDF
    We frame the task of predicting a semantic labeling as a sparse reconstruction procedure that applies a target-specific learned transfer function to a generic deep sparse code representation of an image. This strategy partitions training into two distinct stages. First, in an unsupervised manner, we learn a set of generic dictionaries optimized for sparse coding of image patches. We train a multilayer representation via recursive sparse dictionary learning on pooled codes output by earlier layers. Second, we encode all training images with the generic dictionaries and learn a transfer function that optimizes reconstruction of patches extracted from annotated ground-truth given the sparse codes of their corresponding image patches. At test time, we encode a novel image using the generic dictionaries and then reconstruct using the transfer function. The output reconstruction is a semantic labeling of the test image. Applying this strategy to the task of contour detection, we demonstrate performance competitive with state-of-the-art systems. Unlike almost all prior work, our approach obviates the need for any form of hand-designed features or filters. To illustrate general applicability, we also show initial results on semantic part labeling of human faces. The effectiveness of our approach opens new avenues for research on deep sparse representations. Our classifiers utilize this representation in a novel manner. Rather than acting on nodes in the deepest layer, they attach to nodes along a slice through multiple layers of the network in order to make predictions about local patches. Our flexible combination of a generatively learned sparse representation with discriminatively trained transfer classifiers extends the notion of sparse reconstruction to encompass arbitrary semantic labeling tasks.Comment: to appear in Asian Conference on Computer Vision (ACCV), 201

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    Flow-Based Network Analysis of the Caenorhabditis elegans Connectome

    Get PDF
    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    Beyond KernelBoost

    Get PDF
    In this Technical Report we propose a set of improvements with respect to the KernelBoost classifier presented in [Becker et al., MICCAI 2013]. We start with a scheme inspired by Auto-Context, but that is suitable in situations where the lack of large training sets poses a potential problem of overfitting. The aim is to capture the interactions between neighboring image pixels to better regularize the boundaries of segmented regions. As in Auto-Context [Tu et al., PAMI 2009] the segmentation process is iterative and, at each iteration, the segmentation results for the previous iterations are taken into account in conjunction with the image itself. However, unlike in [Tu et al., PAMI 2009], we organize our recursion so that the classifiers can progressively focus on difficult-to-classify locations. This lets us exploit the power of the decision-tree paradigm while avoiding over-fitting. In the context of this architecture, KernelBoost represents a powerful building block due to its ability to learn on the score maps coming from previous iterations. We first introduce two important mechanisms to empower the KernelBoost classifier, namely pooling and the clustering of positive samples based on the appearance of the corresponding ground-truth. These operations significantly contribute to increase the effectiveness of the system on biomedical images, where texture plays a major role in the recognition of the different image components. We then present some other techniques that can be easily integrated in the KernelBoost framework to further improve the accuracy of the final segmentation. We show extensive results on different medical image datasets, including some multi-label tasks, on which our method is shown to outperform state-of-the-art approaches. The resulting segmentations display high accuracy, neat contours, and reduced noise
    corecore