95 research outputs found

    A Tutorial on Sparse Gaussian Processes and Variational Inference

    Full text link
    Gaussian processes (GPs) provide a framework for Bayesian inference that can offer principled uncertainty estimates for a large range of problems. For example, if we consider regression problems with Gaussian likelihoods, a GP model enjoys a posterior in closed form. However, identifying the posterior GP scales cubically with the number of training examples and requires to store all examples in memory. In order to overcome these obstacles, sparse GPs have been proposed that approximate the true posterior GP with pseudo-training examples. Importantly, the number of pseudo-training examples is user-defined and enables control over computational and memory complexity. In the general case, sparse GPs do not enjoy closed-form solutions and one has to resort to approximate inference. In this context, a convenient choice for approximate inference is variational inference (VI), where the problem of Bayesian inference is cast as an optimization problem -- namely, to maximize a lower bound of the log marginal likelihood. This paves the way for a powerful and versatile framework, where pseudo-training examples are treated as optimization arguments of the approximate posterior that are jointly identified together with hyperparameters of the generative model (i.e. prior and likelihood). The framework can naturally handle a wide scope of supervised learning problems, ranging from regression with heteroscedastic and non-Gaussian likelihoods to classification problems with discrete labels, but also multilabel problems. The purpose of this tutorial is to provide access to the basic matter for readers without prior knowledge in both GPs and VI. A proper exposition to the subject enables also access to more recent advances (like importance-weighted VI as well as interdomain, multioutput and deep GPs) that can serve as an inspiration for new research ideas

    A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings

    Full text link
    We introduce a novel kernel that models input-dependent couplings across multiple latent processes. The pairwise joint kernel measures covariance along inputs and across different latent signals in a mutually-dependent fashion. A latent correlation Gaussian process (LCGP) model combines these non-stationary latent components into multiple outputs by an input-dependent mixing matrix. Probit classification and support for multiple observation sets are derived by Variational Bayesian inference. Results on several datasets indicate that the LCGP model can recover the correlations between latent signals while simultaneously achieving state-of-the-art performance. We highlight the latent covariances with an EEG classification dataset where latent brain processes and their couplings simultaneously emerge from the model.Comment: 17 pages, 6 figures; accepted to ACML 201

    Convolved Gaussian process priors for multivariate regression with applications to dynamical systems

    Get PDF
    In this thesis we address the problem of modeling correlated outputs using Gaussian process priors. Applications of modeling correlated outputs include the joint prediction of pollutant metals in geostatistics and multitask learning in machine learning. Defining a Gaussian process prior for correlated outputs translates into specifying a suitable covariance function that captures dependencies between the different output variables. Classical models for obtaining such a covariance function include the linear model of coregionalization and process convolutions. We propose a general framework for developing multiple output covariance functions by performing convolutions between smoothing kernels particular to each output and covariance functions that are common to all outputs. Both the linear model of coregionalization and the process convolutions turn out to be special cases of this framework. Practical aspects of the proposed methodology are studied in this thesis. They involve the use of domain-specific knowledge for defining relevant smoothing kernels, efficient approximations for reducing computational complexity and a novel method for establishing a general class of nonstationary covariances with applications in robotics and motion capture data.Reprints of the publications that appear at the end of this document, report case studies and experimental results in sensor networks, geostatistics and motion capture data that illustrate the performance of the different methods proposed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes

    Full text link
    We present a non-parametric prognostic framework for individualized event prediction based on joint modeling of both longitudinal and time-to-event data. Our approach exploits a multivariate Gaussian convolution process (MGCP) to model the evolution of longitudinal signals and a Cox model to map time-to-event data with longitudinal data modeled through the MGCP. Taking advantage of the unique structure imposed by convolved processes, we provide a variational inference framework to simultaneously estimate parameters in the joint MGCP-Cox model. This significantly reduces computational complexity and safeguards against model overfitting. Experiments on synthetic and real world data show that the proposed framework outperforms state-of-the art approaches built on two-stage inference and strong parametric assumptions

    Nonparametric Bayesian Mixed-effect Model: a Sparse Gaussian Process Approach

    Full text link
    Multi-task learning models using Gaussian processes (GP) have been developed and successfully applied in various applications. The main difficulty with this approach is the computational cost of inference using the union of examples from all tasks. Therefore sparse solutions, that avoid using the entire data directly and instead use a set of informative "representatives" are desirable. The paper investigates this problem for the grouped mixed-effect GP model where each individual response is given by a fixed-effect, taken from one of a set of unknown groups, plus a random individual effect function that captures variations among individuals. Such models have been widely used in previous work but no sparse solutions have been developed. The paper presents the first sparse solution for such problems, showing how the sparse approximation can be obtained by maximizing a variational lower bound on the marginal likelihood, generalizing ideas from single-task Gaussian processes to handle the mixed-effect model as well as grouping. Experiments using artificial and real data validate the approach showing that it can recover the performance of inference with the full sample, that it outperforms baseline methods, and that it outperforms state of the art sparse solutions for other multi-task GP formulations.Comment: Preliminary version appeared in ECML201
    corecore