29,525 research outputs found

    Secure Layered Transmission in Multicast Systems with Wireless Information and Power Transfer

    Full text link
    This paper considers downlink multicast transmit beamforming for secure layered transmission systems with wireless simultaneous information and power transfer. We study the power allocation algorithm design for minimizing the total transmit power in the presence of passive eavesdroppers and energy harvesting receivers. The algorithm design is formulated as a non-convex optimization problem. Our problem formulation promotes the dual use of energy signals in providing secure communication and facilitating efficient energy transfer. Besides, we take into account a minimum required power for energy harvesting at the idle receivers and heterogeneous quality of service (QoS) requirements for the multicast video receivers. In light of the intractability of the problem, we reformulate the considered problem by replacing a non-convex probabilistic constraint with a convex deterministic constraint. Then, a semidefinite programming relaxation (SDR) approach is adopted to obtain an upper solution for the reformulated problem. Subsequently, sufficient conditions for the global optimal solution of the reformulated problem are revealed. Furthermore, we propose two suboptimal power allocation schemes based on the upper bound solution. Simulation results demonstrate the excellent performance and significant transmit power savings achieved by the proposed schemes compared to isotropic energy signal generation.Comment: 7 pages, 3 figures, accepted for presentation at the IEEE International Conference on Communications (ICC), Sydney, Australia, 201

    Simulation of QoS based call admission schemes for DS-CDMA

    Get PDF
    Code division multiple-access (CDMA) has been receiving considerable attention as the core multiple-access technology in the development of upcoming ubiquitous personal communication service (PCS) system with flexible quality of service (QoS) requirements at any time and anywhere. Moreover, future wireless networks are expected to integrate different types of multimedia traffic, such as voice, data, and compressed images and video. This work aims to investigate the resource allocation problem for wireless direct sequence spread-spectrum CDMA cellular networks supporting heterogeneous multimedia applications where individual users have different QoS requirements. We propose optimal rate and power distribution approaches for source allocation to individual users, subject to a constraint on the total available bandwidth, to maximize the per-cell capacity and maintain the quality of service (QoS) for different multimedia services. Connection oriented admission control schemes based on the required QoS are proposed in this thesis. Several policies are introduced for use in CDMA network. Simulation results show that the proposed Radio Resource Management scheme can achieve both effective QoS guarantee and efficient resource utilization

    Energy Consumption Of Visual Sensor Networks: Impact Of Spatio-Temporal Coverage

    Get PDF
    Wireless visual sensor networks (VSNs) are expected to play a major role in future IEEE 802.15.4 personal area networks (PAN) under recently-established collision-free medium access control (MAC) protocols, such as the IEEE 802.15.4e-2012 MAC. In such environments, the VSN energy consumption is affected by the number of camera sensors deployed (spatial coverage), as well as the number of captured video frames out of which each node processes and transmits data (temporal coverage). In this paper, we explore this aspect for uniformly-formed VSNs, i.e., networks comprising identical wireless visual sensor nodes connected to a collection node via a balanced cluster-tree topology, with each node producing independent identically-distributed bitstream sizes after processing the video frames captured within each network activation interval. We derive analytic results for the energy-optimal spatio-temporal coverage parameters of such VSNs under a-priori known bounds for the number of frames to process per sensor and the number of nodes to deploy within each tier of the VSN. Our results are parametric to the probability density function characterizing the bitstream size produced by each node and the energy consumption rates of the system of interest. Experimental results reveal that our analytic results are always within 7% of the energy consumption measurements for a wide range of settings. In addition, results obtained via a multimedia subsystem show that the optimal spatio-temporal settings derived by the proposed framework allow for substantial reduction of energy consumption in comparison to ad-hoc settings. As such, our analytic modeling is useful for early-stage studies of possible VSN deployments under collision-free MAC protocols prior to costly and time-consuming experiments in the field.Comment: to appear in IEEE Transactions on Circuits and Systems for Video Technology, 201

    Cycle-Consistent Deep Generative Hashing for Cross-Modal Retrieval

    Full text link
    In this paper, we propose a novel deep generative approach to cross-modal retrieval to learn hash functions in the absence of paired training samples through the cycle consistency loss. Our proposed approach employs adversarial training scheme to lean a couple of hash functions enabling translation between modalities while assuming the underlying semantic relationship. To induce the hash codes with semantics to the input-output pair, cycle consistency loss is further proposed upon the adversarial training to strengthen the correlations between inputs and corresponding outputs. Our approach is generative to learn hash functions such that the learned hash codes can maximally correlate each input-output correspondence, meanwhile can also regenerate the inputs so as to minimize the information loss. The learning to hash embedding is thus performed to jointly optimize the parameters of the hash functions across modalities as well as the associated generative models. Extensive experiments on a variety of large-scale cross-modal data sets demonstrate that our proposed method achieves better retrieval results than the state-of-the-arts.Comment: To appeared on IEEE Trans. Image Processing. arXiv admin note: text overlap with arXiv:1703.10593 by other author
    • …
    corecore