3 research outputs found

    A transprecision floating-point cluster for efficient near-sensor data analytics

    Full text link
    Recent applications in the domain of near-sensor computing require the adoption of floating-point arithmetic to reconcile high precision results with a wide dynamic range. In this paper, we propose a multi-core computing cluster that leverages the fined-grained tunable principles of transprecision computing to provide support to near-sensor applications at a minimum power budget. Our design - based on the open-source RISC-V architecture - combines parallelization and sub-word vectorization with near-threshold operation, leading to a highly scalable and versatile system. We perform an exhaustive exploration of the design space of the transprecision cluster on a cycle-accurate FPGA emulator, with the aim to identify the most efficient configurations in terms of performance, energy efficiency, and area efficiency. We also provide a full-fledged software stack support, including a parallel runtime and a compilation toolchain, to enable the development of end-to-end applications. We perform an experimental assessment of our design on a set of benchmarks representative of the near-sensor processing domain, complementing the timing results with a post place-&-route analysis of the power consumption. Finally, a comparison with the state-of-the-art shows that our solution outperforms the competitors in energy efficiency, reaching a peak of 97 Gflop/s/W on single-precision scalars and 162 Gflop/s/W on half-precision vectors

    Accelerating Reduction and Scan Using Tensor Core Units

    Full text link
    Driven by deep learning, there has been a surge of specialized processors for matrix multiplication, referred to as TensorCore Units (TCUs). These TCUs are capable of performing matrix multiplications on small matrices (usually 4x4 or 16x16) to accelerate the convolutional and recurrent neural networks in deep learning workloads. In this paper we leverage NVIDIA's TCU to express both reduction and scan with matrix multiplication and show the benefits -- in terms of program simplicity, efficiency, and performance. Our algorithm exercises the NVIDIA TCUs which would otherwise be idle, achieves 89%-98% of peak memory copy bandwidth, and is orders of magnitude faster (up to 100x for reduction and 3x for scan) than state-of-the-art methods for small segment sizes -- common in machine learning and scientific applications. Our algorithm achieves this while decreasing the power consumption by up to 22% for reduction and16%for scan.Comment: In Proceedings of the ACM International Conference on Supercomputing (ICS '19

    Applications Development for the Computational Grid

    Get PDF
    corecore