438 research outputs found

    On Practical Sampling of Bidirectional Reflectance

    Get PDF

    Simulation-based Planning of Machine Vision Inspection Systems with an Application to Laser Triangulation

    Get PDF
    Nowadays, vision systems play a central role in industrial inspection. The experts typically choose the configuration of measurements in such systems empirically. For complex inspections, however, automatic inspection planning is essential. This book proposes a simulation-based approach towards inspection planning by contributing to all components of this problem: simulation, evaluation, and optimization. As an application, inspection of a complex cylinder head by laser triangulation is studied

    NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field Indirect Illumination

    Full text link
    Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images. In order to achieve better decomposition, recent approaches attempt to model indirect illuminations reflected from different materials via Spherical Gaussians (SG), which, however, tends to blur the high-frequency reflection details. In this paper, we propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images, while considering near-field indirect illumination. In a nutshell, we introduce the Monte Carlo sampling based path tracing and cache the indirect illumination as neural radiance, enabling a physics-faithful and easy-to-optimize inverse rendering method. To enhance efficiency and practicality, we leverage SG to represent the smooth environment illuminations and apply importance sampling techniques. To supervise indirect illuminations from unobserved directions, we develop a novel radiance consistency constraint between implicit neural radiance and path tracing results of unobserved rays along with the joint optimization of materials and illuminations, thus significantly improving the decomposition performance. Extensive experiments demonstrate that our method outperforms the state-of-the-art on multiple synthetic and real datasets, especially in terms of inter-reflection decomposition.Comment: Accepted in CVPR 202

    Acquisition, Modeling, and Augmentation of Reflectance for Synthetic Optical Flow Reference Data

    Get PDF
    This thesis is concerned with the acquisition, modeling, and augmentation of material reflectance to simulate high-fidelity synthetic data for computer vision tasks. The topic is covered in three chapters: I commence with exploring the upper limits of reflectance acquisition. I analyze state-of-the-art BTF reflectance field renderings and show that they can be applied to optical flow performance analysis with closely matching performance to real-world images. Next, I present two methods for fitting efficient BRDF reflectance models to measured BTF data. Both methods combined retain all relevant reflectance information as well as the surface normal details on a pixel level. I further show that the resulting synthesized images are suited for optical flow performance analysis, with a virtually identical performance for all material types. Finally, I present a novel method for augmenting real-world datasets with physically plausible precipitation effects, including ground surface wetting, water droplets on the windshield, and water spray and mists. This is achieved by projecting the realworld image data onto a reconstructed virtual scene, manipulating the scene and the surface reflectance, and performing unbiased light transport simulation of the precipitation effects

    Efficient, image-based appearance acquisition of real-world objects

    Get PDF
    Two ingredients are necessary to synthesize realistic images: an accurate rendering algorithm and, equally important, high-quality models in terms of geometry and reflection properties. In this dissertation we focus on capturing the appearance of real world objects. The acquired model must represent both the geometry and the reflection properties of the object in order to create new views of the object with novel illumination. Starting from scanned 3D geometry, we measure the reflection properties (BRDF) of the object from images taken under known viewing and lighting conditions. The BRDF measurement require only a small number of input images and is made even more efficient by a view planning algorithm. In particular, we propose algorithms for efficient image-to-geometry registration, and an image-based measurement technique to reconstruct spatially varying materials from a sparse set of images using a point light source. Moreover, we present a view planning algorithm that calculates camera and light source positions for optimal quality and efficiency of the measurement process. Relightable models of real-world objects are requested in various fields such as movie production, e-commerce, digital libraries, and virtual heritage.Zur Synthetisierung realistischer Bilder ist zweierlei nötig: ein akkurates Verfahren zur Beleuchtungsberechnung und, ebenso wichtig, qualitativ hochwertige Modelle, die Geometrie und Reflexionseigenschaften der Szene repräsentieren. Die Aufnahme des Erscheinungbildes realer Gegenstände steht im Mittelpunkt dieser Dissertation. Um beliebige Ansichten eines Gegenstandes unter neuer Beleuchtung zu berechnen, müssen die aufgenommenen Modelle sowohl die Geometrie als auch die Reflexionseigenschaften beinhalten. Ausgehend von einem eingescannten 3D-Geometriemodell, werden die Reflexionseigenschaften (BRDF) anhand von Bildern des Objekts gemessen, die unter kontrollierten Lichtverhältnissen aus verschiedenen Perspektiven aufgenommen wurden. Für die Messungen der BRDF sind nur wenige Eingabebilder erforderlich. Im Speziellen werden Methoden vorgestellt für die Registrierung von Bildern und Geometrie sowie für die bildbasierte Messung von variierenden Materialien. Zur zusätzlichen Steigerung der Effizienz der Aufnahme wie der Qualität des Modells, wurde ein Planungsalgorithmus entwickelt, der optimale Kamera- und Lichtquellenpositionen berechnet. Anwendung finden virtuelle 3D-Modelle bespielsweise in der Filmproduktion, im E-Commerce, in digitalen Bibliotheken wie auch bei der Bewahrung von kulturhistorischem Erbe

    Modeling polarimetric imaging using DIRSIG

    Get PDF
    The remote sensing community is beginning to recognize the potential benefit of exploiting polarimetric signatures. The ability to accurately model polarimetric phenomenology in a remote sensing system will assist efforts in system design, algorithm development, phenomenology studies, and analyst training. This dissertation lays the ground work for enhancing the current Digital Imaging and Remote Sens ing Laboratory\u27s Synthetic Image Generation (DIRSIG) model to include polarimetric phenomenology. The current modeling capabilities are discussed along with the theoretical background required to expand upon the current state of the art. Methods for modeling and estimating polarimetric signatures and phenomenology from start to end in a typical remote sensing system are presented. A series of simple simulations were conducted to assess the performance of the new polarimetric capabilities. Analysis was performed to characterize the individual models and the collected performance of the models

    Workshop Proceedings: Optical Systems Technology for Space Astrophysics in the 21st Century, volume 3

    Get PDF
    A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table
    • …
    corecore