3,675 research outputs found

    A review on missing tags detection approaches in RFID system

    Get PDF
    Radio Frequency Identification (RFID) system can provides automatic detection on very large number of tagged objects within short time. With this advantage, it is been using in many areas especially in the supply chain management, manufacturing and many others. It has the ability to track individual object all away from the manufacturing factory until it reach the retailer store. However, due to its nature that depends on radio signal to do the detection, reading on tagged objects can be missing due to the signal lost. The signal lost can be caused by weak signal, interference and unknown source. Missing tag detection in RFID system is truly significant problem, because it makes system reporting becoming useless, due to the misleading information generated from the inaccurate readings. The missing detection also can invoke fake alarm on theft, or object left undetected and unattended for some period. This paper provides review regarding this issue and compares some of the proposed approaches including Window Sub-range Transition Detection (WSTD), Efficient Missing-Tag Detection Protocol (EMD) and Multi-hashing based Missing Tag Identification (MMTI) protocol. Based on the reviews it will give insight on the current challenges and open up for a new solution in solving the problem of missing tag detection

    A Review on Missing Tags Detection Approaches in RFID System

    Get PDF
    Radio Frequency Identification (RFID) system can provides automatic detection on very large number of tagged objects within short time. With this advantage, it is been using in many areas especially in the supply chain management, manufacturing and many others. It has the ability to track individual object all away from the manufacturing factory until it reach the retailer store. However, due to its nature that depends on radio signal to do the detection, reading on tagged objects can be missing due to the signal lost. The signal lost can be caused by weak signal, interference and unknown source. Missing tag detection in RFID system is truly significant problem, because it makes system reporting becoming useless, due to the misleading information generated from the inaccurate readings. The missing detection also can invoke fake alarm on theft, or object left undetected and unattended for some period. This paper provides review regarding this issue and compares some of the proposed approaches including Window Sub-range Transition Detection (WSTD), Efficient Missing-Tag Detection Protocol (EMD) and Multi-hashing based Missing Tag Identification (MMTI) protocol. Based on the reviews it will give insight on the current challenges and open up for a new solution in solving the problem of missing tag detection

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Critical Management Issues for Implementing RFID in Supply Chain Management

    Get PDF
    The benefits of radio frequency identification (RFID) technology in the supply chain are fairly compelling. It has the potential to revolutionise the efficiency, accuracy and security of the supply chain with significant impact on overall profitability. A number of companies are actively involved in testing and adopting this technology. It is estimated that the market for RFID products and services will increase significantly in the next few years. Despite this trend, there are major impediments to RFID adoption in supply chain. While RFID systems have been around for several decades, the technology for supply chain management is still emerging. We describe many of the challenges, setbacks and barriers facing RFID implementations in supply chains, discuss the critical issues for management and offer some suggestions. In the process, we take an in-depth look at cost, technology, standards, privacy and security and business process reengineering related issues surrounding RFID technology in supply chains

    Ensuring Application Specific Security, Privacy and Performance Goals in RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is an automatic identification technology that uses radio frequency to identify objects. Securing RFID systems and providing privacy in RFID applications has been the focus of much academic work lately. To ensure universal acceptance of RFID technology, security and privacy issued must be addressed into the design of any RFID application. Due to the constraints on memory, power, storage capacity, and amount of logic on RFID devices, traditional public key based strong security mechanisms are unsuitable for them. Usually, low cost general authentication protocols are used to secure RFID systems. However, the generic authentication protocols provide relatively low performance for different types of RFID applications. We identified that each RFID application has unique research challenges and different performance bottlenecks based on the characteristics of the system. One strategy is to devise security protocols such that application specific goals are met and system specific performance requirements are maximized. This dissertation aims to address the problem of devising application specific security protocols for current and next generation RFID systems so that in each application area maximum performance can be achieved and system specific goals are met. In this dissertation, we propose four different authentication techniques for RFID technologies, providing solutions to the following research issues: 1) detecting counterfeit as well as ensuring low response time in large scale RFID systems, 2) preserving privacy and maintaining scalability in RFID based healthcare systems, 3) ensuring security and survivability of Computational RFID (CRFID) networks, and 4) detecting missing WISP tags efficiently to ensure reliability of CRFID based system\u27s decision. The techniques presented in this dissertation achieve good levels of privacy, provide security, scale to large systems, and can be implemented on resource-constrained RFID devices

    Efficient unknown tag identification protocols in large-scale RFID systems

    Get PDF
    PublishedJournal ArticleOwing to its attractive features such as fast identification and relatively long interrogating range over the classical barcode systems, radio-frequency identification (RFID) technology possesses a promising prospect in many practical applications such as inventory control and supply chain management. However, unknown tags appear in RFID systems when the tagged objects are misplaced or unregistered tagged objects are moved in, which often causes huge economic losses. This paper addresses an important and challenging problem of unknown tag identification in large-scale RFID systems. The existing protocols leverage the Aloha-like schemes to distinguish the unknown tags from known tags at the slot level, which are of low time-efficiency, and thus can hardly satisfy the delay-sensitive applications. To fill in this gap, two filtering-based protocols (at the bit level) are proposed in this paper to address the problem of unknown tag identification efficiently. Theoretical analysis of the protocol parameters is performed to minimize the execution time of the proposed protocols. Extensive simulation experiments are conducted to evaluate the performance of the protocols. The results demonstrate that the proposed protocols significantly outperform the currently most promising protocols.This work was supported by NSFC (Grant Nos. 60973117, 61173160, 61173162, and 60903154), New Century Excellent Talents in University (NCET) of Ministry of Education of China, The Research Fund for the Doctoral Program of Higher Education (Program No. 20130041110019) and the National Science Foundation for Distinguished Young Scholars of China (Grant No. 61225010)
    • …
    corecore