18,159 research outputs found

    Social Emotion Mining Techniques for Facebook Posts Reaction Prediction

    Full text link
    As of February 2016 Facebook allows users to express their experienced emotions about a post by using five so-called `reactions'. This research paper proposes and evaluates alternative methods for predicting these reactions to user posts on public pages of firms/companies (like supermarket chains). For this purpose, we collected posts (and their reactions) from Facebook pages of large supermarket chains and constructed a dataset which is available for other researches. In order to predict the distribution of reactions of a new post, neural network architectures (convolutional and recurrent neural networks) were tested using pretrained word embeddings. Results of the neural networks were improved by introducing a bootstrapping approach for sentiment and emotion mining on the comments for each post. The final model (a combination of neural network and a baseline emotion miner) is able to predict the reaction distribution on Facebook posts with a mean squared error (or misclassification rate) of 0.135.Comment: 10 pages, 13 figures and accepted at ICAART 2018. (Dataset: https://github.com/jerryspan/FacebookR

    Mining Closed Itemsets for Coherent Rules: An Inference Analysis Approach

    Get PDF
    Past observations have shown that a frequent item set mining algorithm are alleged to mine the closed ones because the finish offers a compact and a whole progress set and higher potency. Anyhow, the most recent closed item set mining algorithms works with candidate maintenance combined with check paradigm that is dear in runtime likewise as area usage when support threshold is a smaller amount or the item sets gets long. Here, we show, PEPP with inference analysis that could be a capable approach used for mining closed sequences for coherent rules while not candidate. It implements a unique sequence closure checking format with inference analysis that based mostly on Sequence Graph protruding by an approach labeled Parallel Edge projection and pruning in brief will refer as PEPP. We describe a novel inference analysis approach to prune patterns that tends to derive coherent rules. A whole observation having sparse and dense real-life information sets proved that PEPP with inference analysis performs larger compared to older algorithms because it takes low memory and is quicker than any algorithms those cited in literature frequently
    • …
    corecore