906 research outputs found

    Gossip Codes for Fingerprinting: Construction, Erasure Analysis and Pirate Tracing

    Full text link
    This work presents two new construction techniques for q-ary Gossip codes from tdesigns and Traceability schemes. These Gossip codes achieve the shortest code length specified in terms of code parameters and can withstand erasures in digital fingerprinting applications. This work presents the construction of embedded Gossip codes for extending an existing Gossip code into a bigger code. It discusses the construction of concatenated codes and realisation of erasure model through concatenated codes.Comment: 28 page

    Remarks on the Cryptographic Primitive of Attribute-based Encryption

    Get PDF
    Attribute-based encryption (ABE) which allows users to encrypt and decrypt messages based on user attributes is a type of one-to-many encryption. Unlike the conventional one-to-one encryption which has no intention to exclude any partners of the intended receiver from obtaining the plaintext, an ABE system tries to exclude some unintended recipients from obtaining the plaintext whether they are partners of some intended recipients. We remark that this requirement for ABE is very hard to meet. An ABE system cannot truly exclude some unintended recipients from decryption because some users can exchange their decryption keys in order to maximize their own interests. The flaw discounts the importance of the cryptographic primitive.Comment: 9 pages, 4 figure

    Engineering and Technological Outlook on Traceability of Agricultural Production and Products

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is an Invited Paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 4 (2002): L. Opara. Engineering and Technological Outlook on Traceability of Agricultural Production and Products. Vol. IV. December 2002

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Design of Self-Healing Key Distribution Schemes

    Get PDF
    A self-healing key distribution scheme enables dynamic groups of users of an unreliable network to establish group keys for secure communication. In such a scheme, a group manager, at the beginning of each session, in order to provide a key to each member of the group, sends packets over a broadcast channel. Every user, belonging to the group, computes the group key by using the packets and some private information. The group manager can start multiple sessions during a certain time-interval, by adding/removing users to/from the initial group. The main property of the scheme is that, if during a certain session some broadcasted packet gets lost, then users are still capable of recovering the group key for that session simply by using the packets they have received during a previous session and the packets they will receive at the beginning of a subsequent one, without requesting additional transmission from the group manager. Indeed, the only requirement that must be satisfied, in order for the user to recover the lost keys, is membership in the group both before and after the sessions in which the broadcast messages containing the keys are sent. This novel and appealing approach to key distribution is quite suitable in certain military applications and in several Internet-related settings, where high security requirements need to be satisfied. In this paper we continue the study of self-healing key distribution schemes, introduced by Staddon et al. [37]. We analyze some existing constructions: we show an attack that can be applied to one of these constructions, in order to recover session keys, and two problems in another construction. Then, we present a new mechanism for implementing the self-healing approach, and we present an efficient construction which is optimal in terms of user memory storage. Finally, we extend the self-healing approach to key distribution, and we present a scheme which enables a user to recover from a single broadcast message all keys associated with sessions in which he is member of the communication group

    The Design and Analysis of Hash Families For Use in Broadcast Encryption

    Get PDF
    abstract: Broadcast Encryption is the task of cryptographically securing communication in a broadcast environment so that only a dynamically specified subset of subscribers, called the privileged subset, may decrypt the communication. In practical applications, it is desirable for a Broadcast Encryption Scheme (BES) to demonstrate resilience against attacks by colluding, unprivileged subscribers. Minimal Perfect Hash Families (PHFs) have been shown to provide a basis for the construction of memory-efficient t-resilient Key Pre-distribution Schemes (KPSs) from multiple instances of 1-resilient KPSs. Using this technique, the task of constructing a large t-resilient BES is reduced to finding a near-minimal PHF of appropriate parameters. While combinatorial and probabilistic constructions exist for minimal PHFs with certain parameters, the complexity of constructing them in general is currently unknown. This thesis introduces a new type of hash family, called a Scattering Hash Family (ScHF), which is designed to allow for the scalable and ingredient-independent design of memory-efficient BESs for large parameters, specifically resilience and total number of subscribers. A general BES construction using ScHFs is shown, which constructs t-resilient KPSs from other KPSs of any resilience ≤w≤t. In addition to demonstrating how ScHFs can be used to produce BESs , this thesis explores several ScHF construction techniques. The initial technique demonstrates a probabilistic, non-constructive proof of existence for ScHFs . This construction is then derandomized into a direct, polynomial time construction of near-minimal ScHFs using the method of conditional expectations. As an alternative approach to direct construction, representing ScHFs as a k-restriction problem allows for the indirect construction of ScHFs via randomized post-optimization. Using the methods defined, ScHFs are constructed and the parameters' effects on solution size are analyzed. For large strengths, constructive techniques lose significant performance, and as such, asymptotic analysis is performed using the non-constructive existential results. This work concludes with an analysis of the benefits and disadvantages of BESs based on the constructed ScHFs. Due to the novel nature of ScHFs, the results of this analysis are used as the foundation for an empirical comparison between ScHF-based and PHF-based BESs . The primary bases of comparison are construction efficiency, key material requirements, and message transmission overhead.Dissertation/ThesisM.S. Computer Science 201

    Leak-Free Mediated Group Signatures

    Get PDF
    Group signatures are a useful cryptographic construct for privacy-preserving non-repudiable authentication, and there have been many group signature schemes. In this paper, we introduce a variant of group signatures that offers two new security properties called leak-freedom and immediate-revocation. Intuitively, the former ensures that an insider (i.e., an authorized but malicious signer) be unable to convince an outsider (e.g., signature receiver) that she indeed signed a certain message; whereas the latter ensures that the authorization for a user to issue group signatures can be immediately revoked whenever the need arises (temporarily or permanently). These properties are not offered in existing group signature schemes, nor captured by their security definitions. However, these properties might be crucial to a large class of enterprise-centric applications because they are desirable from the perspective of the enterprises who adopt group signatures or are the group signatures liability-holders (i.e., will be hold accountable for the consequences of group signatures). In addition to introducing these new securit

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun
    • …
    corecore