209 research outputs found

    Truss Decomposition in Massive Networks

    Full text link
    The k-truss is a type of cohesive subgraphs proposed recently for the study of networks. While the problem of computing most cohesive subgraphs is NP-hard, there exists a polynomial time algorithm for computing k-truss. Compared with k-core which is also efficient to compute, k-truss represents the "core" of a k-core that keeps the key information of, while filtering out less important information from, the k-core. However, existing algorithms for computing k-truss are inefficient for handling today's massive networks. We first improve the existing in-memory algorithm for computing k-truss in networks of moderate size. Then, we propose two I/O-efficient algorithms to handle massive networks that cannot fit in main memory. Our experiments on real datasets verify the efficiency of our algorithms and the value of k-truss.Comment: VLDB201

    DDSL: Efficient Subgraph Listing on Distributed and Dynamic Graphs

    Full text link
    Subgraph listing is a fundamental problem in graph theory and has wide applications in areas like sociology, chemistry, and social networks. Modern graphs can usually be large-scale as well as highly dynamic, which challenges the efficiency of existing subgraph listing algorithms. Recent works have shown the benefits of partitioning and processing big graphs in a distributed system, however, there is only few work targets subgraph listing on dynamic graphs in a distributed environment. In this paper, we propose an efficient approach, called Distributed and Dynamic Subgraph Listing (DDSL), which can incrementally update the results instead of running from scratch. DDSL follows a general distributed join framework. In this framework, we use a Neighbor-Preserved storage for data graphs, which takes bounded extra space and supports dynamic updating. After that, we propose a comprehensive cost model to estimate the I/O cost of listing subgraphs. Then based on this cost model, we develop an algorithm to find the optimal join tree for a given pattern. To handle dynamic graphs, we propose an efficient left-deep join algorithm to incrementally update the join results. Extensive experiments are conducted on real-world datasets. The results show that DDSL outperforms existing methods in dealing with both static dynamic graphs in terms of the responding time

    Shared-Memory Parallel Maximal Clique Enumeration

    Get PDF
    We present shared-memory parallel methods for Maximal Clique Enumeration (MCE) from a graph. MCE is a fundamental and well-studied graph analytics task, and is a widely used primitive for identifying dense structures in a graph. Due to its computationally intensive nature, parallel methods are imperative for dealing with large graphs. However, surprisingly, there do not yet exist scalable and parallel methods for MCE on a shared-memory parallel machine. In this work, we present efficient shared-memory parallel algorithms for MCE, with the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art sequential algorithm (2) the algorithms have a provably small parallel depth, showing that they can scale to a large number of processors, and (3) our implementations on a multicore machine shows a good speedup and scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel algorithms for MCE.Comment: 10 pages, 3 figures, proceedings of the 25th IEEE International Conference on. High Performance Computing, Data, and Analytics (HiPC), 201

    Efficient and Scalable Listing of Four-Vertex Subgraph

    Get PDF
    Identifying four-vertex subgraphs has long been recognized as a fundamental technique in bioinformatics and social networks. However, listing these structures is a challenging task, especially for graphs that do not fit in RAM. To address this problem, we build a set of algorithms, models, and implementations that can handle massive graphs on commodity hardware. Our technique achieves 4 – 5 orders of magnitude speedup compared to the best prior methods on graphs with billions of edges, with external-memory operation equally efficient
    • …
    corecore