3,304 research outputs found

    NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps

    Get PDF
    Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though Graphical Processing Units (GPUs) are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios. NullHop exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows high utilization of available computing resources across kernel sizes ranging from 1x1 to 7x7. NullHop can process up to 128 input and 128 output feature maps per layer in a single pass. We implemented the proposed architecture on a Xilinx Zynq FPGA platform and present results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. Post-synthesis simulations using Mentor Modelsim in a 28nm process with a clock frequency of 500 MHz show that the VGG19 network achieves over 450 GOp/s. By exploiting sparsity, NullHop achieves an efficiency of 368%, maintains over 98% utilization of the MAC units, and achieves a power efficiency of over 3TOp/s/W in a core area of 6.3mm2^2. As further proof of NullHop's usability, we interfaced its FPGA implementation with a neuromorphic event camera for real time interactive demonstrations

    Resource Management for Edge Computing in Internet of Things (IoT)

    Get PDF
    Die große Anzahl an GerĂ€ten im Internet der Dinge (IoT) und deren kontinuierliche Datensammlungen fĂŒhren zu einem rapiden Wachstum der gesammelten Datenmenge. Die Daten komplett mittels zentraler Cloud Server zu verarbeiten ist ineffizient und zum Teil sogar unmöglich oder unnötig. Darum wird die Datenverarbeitung an den Rand des Netzwerks verschoben, was zu den Konzepten des Edge Computings gefĂŒhrt hat. Informationsverarbeitung nahe an der Datenquelle (z.B. auf Gateways und Edge GerĂ€ten) reduziert nicht nur die hohe Arbeitslast zentraler Server und Netzwerke, sondern verringer auch die Latenz fĂŒr Echtzeitanwendungen, da die potentiell unzuverlĂ€ssige Kommunikation zu Cloud Servern mit ihrer unvorhersehbaren Netzwerklatenz vermieden wird. Aktuelle IoT Architekturen verwenden Gateways, um anwendungsspezifische Verbindungen zu IoT GerĂ€ten herzustellen. In typischen Konfigurationen teilen sich mehrere IoT Edge GerĂ€te ein IoT Gateway. Wegen der begrenzten verfĂŒgbaren Bandbreite und RechenkapazitĂ€t eines IoT Gateways muss die ServicequalitĂ€t (SQ) der verbundenen IoT Edge GerĂ€te ĂŒber die Zeit angepasst werden. Nicht nur um die Anforderungen der einzelnen Nutzer der IoT GerĂ€te zu erfĂŒllen, sondern auch um die SQBedĂŒrfnisse der anderen IoT Edge GerĂ€te desselben Gateways zu tolerieren. Diese Arbeit untersucht zuerst essentielle Technologien fĂŒr IoT und existierende Trends. Dabei werden charakteristische Eigenschaften von IoT fĂŒr die Embedded DomĂ€ne, sowie eine umfassende IoT Perspektive fĂŒr Eingebettete Systeme vorgestellt. Mehrere Anwendungen aus dem Gesundheitsbereich werden untersucht und implementiert, um ein Model fĂŒr deren Datenverarbeitungssoftware abzuleiten. Dieses Anwendungsmodell hilft bei der Identifikation verschiedener Betriebsmodi. IoT Systeme erwarten von den Edge GerĂ€ten, dass sie mehrere Betriebsmodi unterstĂŒtzen, um sich wĂ€hrend des Betriebs an wechselnde Szenarien anpassen zu können. Z.B. Energiesparmodi bei geringen Batteriereserven trotz gleichzeitiger Aufrechterhaltung der kritischen FunktionalitĂ€t oder einen Modus, um die ServicequalitĂ€t auf Wunsch des Nutzers zu erhöhen etc. Diese Modi verwenden entweder verschiedene Auslagerungsschemata (z.B. die ĂŒbertragung von Rohdaten, von partiell bearbeiteten Daten, oder nur des finalen Ergebnisses) oder verschiedene ServicequalitĂ€ten. Betriebsmodi unterscheiden sich in ihren Ressourcenanforderungen sowohl auf dem GerĂ€t (z.B. Energieverbrauch), wie auch auf dem Gateway (z.B. Kommunikationsbandbreite, Rechenleistung, Speicher etc.). Die Auswahl des besten Betriebsmodus fĂŒr Edge GerĂ€te ist eine Herausforderung in Anbetracht der begrenzten Ressourcen am Rand des Netzwerks (z.B. Bandbreite und Rechenleistung des gemeinsamen Gateways), diverser Randbedingungen der IoT Edge GerĂ€te (z.B. Batterielaufzeit, ServicequalitĂ€t etc.) und der LaufzeitvariabilitĂ€t am Rand der IoT Infrastruktur. In dieser Arbeit werden schnelle und effiziente Auswahltechniken fĂŒr Betriebsmodi entwickelt und prĂ€sentiert. Wenn sich IoT GerĂ€te in der Reichweite mehrerer Gateways befinden, ist die Verwaltung der gemeinsamen Ressourcen und die Auswahl der Betriebsmodi fĂŒr die IoT GerĂ€te sogar noch komplexer. In dieser Arbeit wird ein verteilter handelsorientierter GerĂ€teverwaltungsmechanismus fĂŒr IoT Systeme mit mehreren Gateways prĂ€sentiert. Dieser Mechanismus zielt auf das kombinierte Problem des Bindens (d.h. ein Gateway fĂŒr jedes IoT GerĂ€t bestimmen) und der Allokation (d.h. die zugewiesenen Ressourcen fĂŒr jedes GerĂ€t bestimmen) ab. Beginnend mit einer initialen Konfiguration verhandeln und kommunizieren die Gateways miteinander und migrieren IoT GerĂ€te zwischen den Gateways, wenn es den Nutzen fĂŒr das Gesamtsystem erhöht. In dieser Arbeit werden auch anwendungsspezifische Optimierungen fĂŒr IoT GerĂ€te vorgestellt. Drei Anwendungen fĂŒr den Gesundheitsbereich wurden realisiert und fĂŒr tragbare IoT GerĂ€te untersucht. Es wird auch eine neuartige Kompressionsmethode vorgestellt, die speziell fĂŒr IoT Anwendungen geeignet ist, die Bio-Signale fĂŒr GesundheitsĂŒberwachungen verarbeiten. Diese Technik reduziert die zu ĂŒbertragende Datenmenge des IoT GerĂ€tes, wodurch die Ressourcenauslastung auf dem GerĂ€t und dem gemeinsamen Gateway reduziert wird. Um die vorgeschlagenen Techniken und Mechanismen zu evaluieren, wurden einige Anwendungen auf IoT Plattformen untersucht, um ihre Parameter, wie die AusfĂŒhrungszeit und Ressourcennutzung, zu bestimmen. Diese Parameter wurden dann in einem Rahmenwerk verwendet, welches das IoT Netzwerk modelliert, die Interaktion zwischen GerĂ€ten und Gateway erfasst und den Kommunikationsoverhead sowie die erreichte Batterielebenszeit und ServicequalitĂ€t der GerĂ€te misst. Die Algorithmen zur Auswahl der Betriebsmodi wurden zusĂ€tzlich auf IoT Plattformen implementiert, um ihre Overheads bzgl. AusfĂŒhrungszeit und Speicherverbrauch zu messen

    GREEN RADIO COMMUNICATIONS IN 5G NETWORKS TO IMPROVE ENERGY EFFICIENCY AND REDUCE GLOBAL WARMING

    Get PDF
    The technology of green radio communication helps in reducing the emission of carbon and also helps in the process of reducing the consumption of energy by the base stations of wireless networks. In addition to that, with the help of tools such as Information Communication Technology (ICT) and Multi-Hop Relay Network (MHR), the functionalities and the operational attributes of the technology of green radio communication can be improved and the process of energy consumption gets better as well. It is found from the discussion that green networking technology has mainly two core components and the two core components are energy awareness and energy efficiency. The ability of the network to measure the cost per packet is called energy awareness. On the other hand, the ability of a network to decrease the contribution of carbon and extend the lifetime of the network can be called energy efficiency. In addition, the implementation of the technology of green radio communication helps in mitigating the issue of future energy crises. Additionally, it has also been understood that Green communication in terms of energy efficiency can help IT industry which has been extensively criticised for the contribution of the carbon emissions as well as the failure to respond to the negative impact on the whole climate. In fact, the next generation networks have imposed the challenges in terms of the provision of the energy efficient solutions which are provided and the transportation of the data along with the huge range of the quality of the services requirement as well as the tolerance of lower optimum services.The technology of green radio communication helps in reducing the emission of carbon and also helps in the process of reducing the consumption of energy by the base stations of wireless networks. In addition to that, with the help of tools such as Information Communication Technology (ICT) and Multi-Hop Relay Network (MHR), the functionalities and the operational attributes of the technology of green radio communication can be improved and the process of energy consumption gets better as well. It is found from the discussion that green networking technology has mainly two core components and the two core components are energy awareness and energy efficiency. The ability of the network to measure the cost per packet is called energy awareness. On the other hand, the ability of a network to decrease the contribution of carbon and extend the lifetime of the network can be called energy efficiency. In addition, the implementation of the technology of green radio communication helps in mitigating the issue of future energy crises. Additionally, it has also been understood that Green communication in terms of energy efficiency can help IT industry which has been extensively criticised for the contribution of the carbon emissions as well as the failure to respond to the negative impact on the whole climate. In fact, the next generation networks have imposed the challenges in terms of the provision of the energy efficient solutions which are provided and the transportation of the data along with the huge range of the quality of the services requirement as well as the tolerance of lower optimum services

    Global Congestion and Fault Aware Wireless Interconnection Framework for Multicore Systems

    Get PDF
    Multicore processors are getting more common in the implementation of all type of computing demands, starting from personal computers to the large server farms for high computational demanding applications. The network-on-chip provides a better alternative to the traditional bus based communication infrastructure for this multicore system. Conventional wire-based NoC interconnect faces constraints due to their long multi-hop latency and high power consumption. Furthermore high traffic generating applications sometimes creates congestion in such system further degrading the systems performance. In this thesis work, a novel two-state congestion aware wireless interconnection framework for network chip is presented. This WiNoC system was designed to able to dynamically redirect traffic to avoid congestion based on network condition information shared among all the core tiles in the system. Hence a novel routing scheme and a two-state MAC protocol is proposed based on a proposed two layer hybrid mesh-based NoC architecture. The underlying mesh network is connected via wired-based interconnect and on top of that a shared wireless interconnect framework is added for single-hop communication. The routing scheme is non-deterministic in nature and utilizes the principles from existing dynamic routing algorithms. The MAC protocol for the wireless interface works in two modes. The first is data mode where a token-based protocol is utilized to transfer core data. And the second mode is the control mode where a broadcast-based communication protocol is used to share the network congestion information. The work details the switching methodology between these two modes and also explain, how the routing scheme utilizes the congestion information (gathered during the control mode) to route data packets during normal operation mode. The proposed work was modeled in a cycle accurate network simulator and its performance were evaluated against traditional NoC and WiNoC designs
    • 

    corecore