8,342 research outputs found

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    A Pattern Language for High-Performance Computing Resilience

    Full text link
    High-performance computing systems (HPC) provide powerful capabilities for modeling, simulation, and data analytics for a broad class of computational problems. They enable extreme performance of the order of quadrillion floating-point arithmetic calculations per second by aggregating the power of millions of compute, memory, networking and storage components. With the rapidly growing scale and complexity of HPC systems for achieving even greater performance, ensuring their reliable operation in the face of system degradations and failures is a critical challenge. System fault events often lead the scientific applications to produce incorrect results, or may even cause their untimely termination. The sheer number of components in modern extreme-scale HPC systems and the complex interactions and dependencies among the hardware and software components, the applications, and the physical environment makes the design of practical solutions that support fault resilience a complex undertaking. To manage this complexity, we developed a methodology for designing HPC resilience solutions using design patterns. We codified the well-known techniques for handling faults, errors and failures that have been devised, applied and improved upon over the past three decades in the form of design patterns. In this paper, we present a pattern language to enable a structured approach to the development of HPC resilience solutions. The pattern language reveals the relations among the resilience patterns and provides the means to explore alternative techniques for handling a specific fault model that may have different efficiency and complexity characteristics. Using the pattern language enables the design and implementation of comprehensive resilience solutions as a set of interconnected resilience patterns that can be instantiated across layers of the system stack.Comment: Proceedings of the 22nd European Conference on Pattern Languages of Program

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Towards an\u2028 EU research and innovation policy agenda for nature-based solutions & re-naturing cities. Final report of the Horizon 2020 expert group on nature-based solutions and re-naturing cities.

    Get PDF
    1. Nature-based solutions harness the power and sophistication of nature to turn environmental, social and economic challenges into innovation opportunities. They can address a variety of societal challenges in sustainable ways, with the potential to contribute to green growth, 'future-proofing' society, fostering citizen well-being, providing business opportunities and positioning Europe as a leader in world markets. \u2028 2. Nature-based solutions are actions which are inspired by, supported by or copied from nature. They have tremendous potential to be energy and resource-efficient and resilient to change, but to be successful they must be adapted to local conditions. \u2028 3. Many nature-based solutions result in multiple co-benefits for health, the economy, society and the environment, and thus they can represent more efficient and cost-effective solutions than more traditional approaches. \u2028 4. An EU Research & Innovation (R&I) agenda on nature-based solutions will enable Europe to become a world leader both in R&I and in the growing market for nature-based solutions. For this, the evidence base for the effectiveness of nature-based solutions needs to be developed and then used to implement solutions. Both need to be done in conjunction with stakeholders. The potential for transferability and upscaling of solutions also requires further investigation. There is also a need to develop a systemic approach that combines technical, business, finance, governance, regulatory and social innovation. \u2028 5. Four principal goals have been identified that can be addressed by nature-based solutions: �� Enhancing sustainable urbanisation through nature-based solutions can stimulate economic growth as well as improving the environment, making cities more attractive, and enhancing human well-being. \u2028 �� Restoring degraded ecosystems using nature-based solutions can improve the resilience of ecosystems, enabling them to deliver vital ecosystem services and also to meet other societal challenges. \u2028 �� Developing climate change adaptation and mitigation using nature-based solutions can provide more resilient responses and enhance the storage of carbon. \u2028 �� Improving risk management and resilience using nature-based solutions can lead to greater benefits than conventional methods and offer synergies in reducing multiple risks. \u2028 6. Based on the four goals, seven nature-based solutions for R&I actions are recommended to be taken forward by the European Commission and Member States: �� Urban regeneration through nature-based solutions \u2028 �� Nature-based solutions for improving well-being in urban areas \u2028 �� Establishing nature-based solutions for coastal resilience \u2028 �� Multi-functional nature-based watershed management and ecosystem restoration \u2028 �� Nature-based solutions for increasing the sustainability of the use of matter and energy \u2028 �� Nature-based solutions for enhancing the insurance value of ecosystems \u2028 �� Increasing carbon sequestration through nature-based solutions \u2028This report was produced by the Horizon 2020 Expert Group on 'Nature-Based Solutions and Re- Naturing Cities', informed by the findings of an e-consultation and a stakeholder workshop. \u202

    The Canadian ‘Model Forest’ approach : a way forward for Tasmania?

    Get PDF
    Forest policy and forestry management in Tasmania have undergone a number of changes in the last thirty years, many explicitly aimed at improving industry sustainability, job security, and forest biodiversity conservation. Yet forestry remains a contentious issue in Tasmania, due to a number of interacting factors, most significant of which is the prevalence of a ‘command and control’ governance approach by policymakers and managers. New approaches such as multiple-stakeholder decision-making, adaptive management, and direct public participation in policymaking are needed. Such an approach has been attempted in Canada in the last decade, through the Canadian Model Forest Program, and may be suitable for Tasmania. This paper seeks to describe what the Canadian Model Forest approach is, how it may be implemented in Tasmania, and what role it may play in the shift to a new forestry paradigm. Until such a paradigm shift occurs contentions and confrontations are likely to continue

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view
    corecore