13,285 research outputs found

    Advection, diffusion and delivery over a network

    Get PDF
    Many biological, geophysical and technological systems involve the transport of resource over a network. In this paper we present an algorithm for calculating the exact concentration of resource at any point in space or time, given that the resource in the network is lost or delivered out of the network at a given rate, while being subject to advection and diffusion. We consider the implications of advection, diffusion and delivery for simple models of glucose delivery through a vascular network, and conclude that in certain circumstances, increasing the volume of blood and the number of glucose transporters can actually decrease the total rate of glucose delivery. We also consider the case of empirically determined fungal networks, and analyze the distribution of resource that emerges as such networks grow over time. Fungal growth involves the expansion of fluid filled vessels, which necessarily involves the movement of fluid. In three empirically determined fungal networks we found that the minimum currents consistent with the observed growth would effectively transport resource throughout the network over the time-scale of growth. This suggests that in foraging fungi, the active transport mechanisms observed in the growing tips may not be required for long range transport.Comment: 54 pages including appendix, 10 figure

    Wireless Node Cooperation with Resource Availability Constraints

    Full text link
    Base station cooperation is a promising scheme to improve network performance for next generation cellular networks. Up to this point research has focused on station grouping criteria based solely on geographic proximity. However, for the cooperation to be meaningful, each station participating in a group should have sufficient available resources to share with others. In this work we consider an alternative grouping criterion based on a distance that considers both geographic proximity and available resources of the stations. When the network is modelled by a Poisson Point Process, we derive analytical formulas on the proportion of cooperative pairs or single stations, and the expected sum interference from each of the groups. The results illustrate that cooperation gains strongly depend on the distribution of available resources over the network.Comment: submitted, 12 pages, double-column, 7 figures, 8 sub-figures in tota

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Perceptual Perspective Taking and Action Recognition

    No full text
    Robots that operate in social environments need to be able to recognise and understand the actions of other robots, and humans, in order to facilitate learning through imitation and collaboration. The success of the simulation theory approach to action recognition and imitation relies on the ability to take the perspective of other people, so as to generate simulated actions from their point of view. In this paper, simulation of visual perception is used to re-create the visual egocentric sensory space and egocentric behaviour space of an observed agent, and through this increase the accuracy of action recognition. To demonstrate the approach, experiments are performed with a robot attributing perceptions to and recognising the actions of a second robot
    • 

    corecore