18 research outputs found

    Efficient Learning for Discriminative Segmentation with Supermodular Losses

    Get PDF
    International audienceSeveral supermodular losses have been shown to improve the perceptual quality of image segmentation in a discriminative framework such as a structured output support vector machine (SVM). These loss functions do not necessarily have the same structure as the segmentation inference algorithm, and in general, we may have to resort to generic submodular minimization algorithms for loss augmented inference. Although these come with polynomial time guarantees, they are not practical to apply to image scale data. Many supermodular losses come with strong optimization guarantees, but are not readily incorporated in a loss augmented graph cuts procedure. This motivates our strategy of employing the alternating direction method of multipliers (ADMM) decomposition for loss augmented inference. In doing so, we create a new API for the structured SVM that separates the maximum a posteriori (MAP) inference of the model from the loss augmentation during training. In this way, we gain computational efficiency, making new choices of loss functions practical for the first time, while simultaneously making the inference algorithm employed during training closer to the test time procedure. We show improvement both in accuracy and computational performance on the Microsoft Research Grabcut database and a brain structure segmentation task, empirically validating the use of a supermodular loss during training, and the improved computational properties of the proposed ADMM approach over the Fujishige-Wolfe minimum norm point algorithm

    Efficient Decomposed Learning for Structured Prediction

    Full text link
    Structured prediction is the cornerstone of several machine learning applications. Unfortunately, in structured prediction settings with expressive inter-variable interactions, exact inference-based learning algorithms, e.g. Structural SVM, are often intractable. We present a new way, Decomposed Learning (DecL), which performs efficient learning by restricting the inference step to a limited part of the structured spaces. We provide characterizations based on the structure, target parameters, and gold labels, under which DecL is equivalent to exact learning. We then show that in real world settings, where our theoretical assumptions may not completely hold, DecL-based algorithms are significantly more efficient and as accurate as exact learning.Comment: ICML201

    A Convex Surrogate Operator for General Non-Modular Loss Functions

    Get PDF
    International audienceEmpirical risk minimization frequently employs convex surrogates to underlying discrete loss functions in order to achieve computational tractability during optimization. However, classical convex surrogates can only tightly bound modular loss functions, sub-modular functions or supermodular functions separately while maintaining polynomial time computation. In this work, a novel generic convex surrogate for general non-modular loss functions is introduced, which provides for the first time a tractable solution for loss functions that are neither super-modular nor submodular. This convex surro-gate is based on a submodular-supermodular decomposition for which the existence and uniqueness is proven in this paper. It takes the sum of two convex surrogates that separately bound the supermodular component and the submodular component using slack-rescaling and the Lovász hinge, respectively. It is further proven that this surrogate is convex , piecewise linear, an extension of the loss function, and for which subgradient computation is polynomial time. Empirical results are reported on a non-submodular loss based on the Sørensen-Dice difference function, and a real-world face track dataset with tens of thousands of frames, demonstrating the improved performance, efficiency, and scalabil-ity of the novel convex surrogate

    ScribFormer: Transformer Makes CNN Work Better for Scribble-based Medical Image Segmentation

    Get PDF
    Most recent scribble-supervised segmentation methods commonly adopt a CNN framework with an encoder-decoder architecture. Despite its multiple benefits, this framework generally can only capture small-range feature dependency for the convolutional layer with the local receptive field, which makes it difficult to learn global shape information from the limited information provided by scribble annotations. To address this issue, this paper proposes a new CNN-Transformer hybrid solution for scribble-supervised medical image segmentation called ScribFormer. The proposed ScribFormer model has a triple-branch structure, i.e., the hybrid of a CNN branch, a Transformer branch, and an attention-guided class activation map (ACAM) branch. Specifically, the CNN branch collaborates with the Transformer branch to fuse the local features learned from CNN with the global representations obtained from Transformer, which can effectively overcome limitations of existing scribble-supervised segmentation methods. Furthermore, the ACAM branch assists in unifying the shallow convolution features and the deep convolution features to improve model’s performance further. Extensive experiments on two public datasets and one private dataset show that our ScribFormer has superior performance over the state-of-the-art scribble-supervised segmentation methods, and achieves even better results than the fully-supervised segmentation methods. The code is released at https://github.com/HUANGLIZI/ScribFormer

    Optimization for Image Segmentation

    Get PDF
    Image segmentation, i.e., assigning each pixel a discrete label, is an essential task in computer vision with lots of applications. Major techniques for segmentation include for example Markov Random Field (MRF), Kernel Clustering (KC), and nowadays popular Convolutional Neural Networks (CNN). In this work, we focus on optimization for image segmentation. Techniques like MRF, KC, and CNN optimize MRF energies, KC criteria, or CNN losses respectively, and their corresponding optimization is very different. We are interested in the synergy and the complementary benefits of MRF, KC, and CNN for interactive segmentation and semantic segmentation. Our first contribution is pseudo-bound optimization for binary MRF energies that are high-order or non-submodular. Secondly, we propose Kernel Cut, a novel formulation for segmentation, which combines MRF regularization with Kernel Clustering. We show why to combine KC with MRF and how to optimize the joint objective. In the third part, we discuss how deep CNN segmentation can benefit from non-deep (i.e., shallow) methods like MRF and KC. In particular, we propose regularized losses for weakly-supervised CNN segmentation, in which we can integrate MRF energy or KC criteria as part of the losses. Minimization of regularized losses is a principled approach to semi-supervised learning, in general. Our regularized loss method is very simple and allows different kinds of regularization losses for CNN segmentation. We also study the optimization of regularized losses beyond gradient descent. Our regularized losses approach achieves state-of-the-art accuracy in semantic segmentation with near full supervision quality

    Local learning by partitioning

    Full text link
    In many machine learning applications data is assumed to be locally simple, where examples near each other have similar characteristics such as class labels or regression responses. Our goal is to exploit this assumption to construct locally simple yet globally complex systems that improve performance or reduce the cost of common machine learning tasks. To this end, we address three main problems: discovering and separating local non-linear structure in high-dimensional data, learning low-complexity local systems to improve performance of risk-based learning tasks, and exploiting local similarity to reduce the test-time cost of learning algorithms. First, we develop a structure-based similarity metric, where low-dimensional non-linear structure is captured by solving a non-linear, low-rank representation problem. We show that this problem can be kernelized, has a closed-form solution, naturally separates independent manifolds, and is robust to noise. Experimental results indicate that incorporating this structural similarity in well-studied problems such as clustering, anomaly detection, and classification improves performance. Next, we address the problem of local learning, where a partitioning function divides the feature space into regions where independent functions are applied. We focus on the problem of local linear classification using linear partitioning and local decision functions. Under an alternating minimization scheme, learning the partitioning functions can be reduced to solving a weighted supervised learning problem. We then present a novel reformulation that yields a globally convex surrogate, allowing for efficient, joint training of the partitioning functions and local classifiers. We then examine the problem of learning under test-time budgets, where acquiring sensors (features) for each example during test-time has a cost. Our goal is to partition the space into regions, with only a small subset of sensors needed in each region, reducing the average number of sensors required per example. Starting with a cascade structure and expanding to binary trees, we formulate this problem as an empirical risk minimization and construct an upper-bounding surrogate that allows for sequential decision functions to be trained jointly by solving a linear program. Finally, we present preliminary work extending the notion of test-time budgets to the problem of adaptive privacy

    High-Order Inference, Ranking, and Regularization Path for Structured SVM

    Get PDF
    This thesis develops novel methods to enable the use of structured prediction in computer vision and medical imaging. Specifically, our contributions are four fold. First, we propose a new family of high-order potentials that encourage parsimony in the labeling, and enable its use by designing an accurate graph cuts based algorithm to minimize the corresponding energy function. Second, we show how the average precision SVM formulation can be extended to incorporate high-order information for ranking. Third, we propose a novel regularization path algorithm for structured SVM. Fourth, we show how the weakly supervised framework of latent SVM can be employed to learn the parameters for the challenging deformable registration problem.In more detail, the first part of the thesis investigates the high-order inference problem. Specifically, we present a novel family of discrete energy minimization problems, which we call parsimonious labeling. It is a natural generalization of the well known metric labeling problems for high-order potentials. In addition to this, we propose a generalization of the Pn-Potts model, which we call Hierarchical Pn-Potts model. In the end, we propose parallelizable move making algorithms with very strong multiplicative bounds for the optimization of the hierarchical Pn-Potts model and the parsimonious labeling.Second part of the thesis investigates the ranking problem while using high-order information. Specifically, we introduce two alternate frameworks to incorporate high-order information for the ranking tasks. The first framework, which we call high-order binary SVM (HOB-SVM), optimizes a convex upperbound on weighted 0-1 loss while incorporating high-order information using joint feature map. The rank list for the HOB-SVM is obtained by sorting samples using max-marginals based scores. The second framework, which we call high-order AP-SVM (HOAP-SVM), takes its inspiration from AP-SVM and HOB-SVM (our first framework). Similar to AP-SVM, it optimizes upper bound on average precision. However, unlike AP-SVM and similar to HOB-SVM, it can also encode high-order information. The main disadvantage of HOAP-SVM is that estimating its parameters requires solving a difference-of-convex program. We show how a local optimum of the HOAP-SVM learning problem can be computed efficiently by the concave-convex procedure. Using standard datasets, we empirically demonstrate that HOAP-SVM outperforms the baselines by effectively utilizing high-order information while optimizing the correct loss function.In the third part of the thesis, we propose a new algorithm SSVM-RP to obtain epsilon-optimal regularization path of structured SVM. We also propose intuitive variants of the Block-Coordinate Frank-Wolfe algorithm (BCFW) for the faster optimization of the SSVM-RP algorithm. In addition to this, we propose a principled approach to optimize the SSVM with additional box constraints using BCFW and its variants. In the end, we propose regularization path algorithm for SSVM with additional positivity/negativity constraints.In the fourth and the last part of the thesis (Appendix), we propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional metrics. Conventional metrics can cope partially - depending on the clinical context - with tissue anatomical properties. In this work we seek to determine anatomy/tissue specific metrics as a context-specific aggregation/linear combination of known metrics. We propose a weakly supervised learning algorithm for estimating these parameters conditionally to the data semantic classes, using a weak training dataset. We show the efficacy of our approach on three highly challenging datasets in the field of medical imaging, which vary in terms of anatomical structures and image modalities.Cette thèse présente de nouvelles méthodes pour l'application de la prédiction structurée en vision numérique et en imagerie médicale.Nos nouvelles contributions suivent quatre axes majeurs.La première partie de cette thèse étudie le problème d'inférence d'ordre supérieur.Nous présentons une nouvelle famille de problèmes de minimisation d'énergie discrète, l'étiquetage parcimonieux, encourageant la parcimonie des étiquettes.C'est une extension naturelle des problèmes connus d'étiquetage de métriques aux potentiels d'ordre élevé.Nous proposons par ailleurs une généralisation du modèle Pn-Potts, le modèle Pn-Potts hiérarchique.Enfin, nous proposons un algorithme parallélisable à proposition de mouvements avec de fortes bornes multiplicatives pour l'optimisation du modèle Pn-Potts hiérarchique et l'étiquetage parcimonieux.La seconde partie de cette thèse explore le problème de classement en utilisant de l'information d'ordre élevé.Nous introduisons deux cadres différents pour l'incorporation d'information d'ordre élevé dans le problème de classement.Le premier modèle, que nous nommons SVM binaire d'ordre supérieur (HOB-SVM), optimise une borne supérieure convexe sur l'erreur 0-1 pondérée tout en incorporant de l'information d'ordre supérieur en utilisant un vecteur de charactéristiques jointes.Le classement renvoyé par HOB-SVM est obtenu en ordonnant les exemples selon la différence entre la max-marginales de l'affectation d'un exemple à la classe associée et la max-marginale de son affectation à la classe complémentaire.Le second modèle, appelé AP-SVM d'ordre supérieur (HOAP-SVM), s'inspire d'AP-SVM et de notre premier modèle, HOB-SVM.Le modèle correspond à une optimisation d'une borne supérieure sur la précision moyenne, à l'instar d'AP-SVM, qu'il généralise en permettant également l'incorporation d'information d'ordre supérieur.Nous montrons comment un optimum local du problème d'apprentissage de HOAP-SVM peut être déterminé efficacement grâce à la procédure concave-convexe.En utilisant des jeux de données standards, nous montrons empiriquement que HOAP-SVM surpasse les modèles de référence en utilisant efficacement l'information d'ordre supérieur tout en optimisant directement la fonction d'erreur appropriée.Dans la troisième partie, nous proposons un nouvel algorithme, SSVM-RP, pour obtenir un chemin de régularisation epsilon-optimal pour les SVM structurés.Nous présentons également des variantes intuitives de l'algorithme Frank-Wolfe pour l'optimisation accélérée de SSVM-RP.De surcroît, nous proposons une approche systématique d'optimisation des SSVM avec des contraintes additionnelles de boîte en utilisant BCFW et ses variantes.Enfin, nous proposons un algorithme de chemin de régularisation pour SSVM avec des contraintes additionnelles de positivité/negativité.Dans la quatrième et dernière partie de la thèse, en appendice, nous montrons comment le cadre de l'apprentissage semi-supervisé des SVM à variables latentes peut être employé pour apprendre les paramètres d'un problème complexe de recalage déformable.Nous proposons un nouvel algorithme discriminatif semi-supervisé pour apprendre des métriques de recalage spécifiques au contexte comme une combinaison linéaire des métriques conventionnelles.Selon l'application, les métriques traditionnelles sont seulement partiellement sensibles aux propriétés anatomiques des tissus.Dans ce travail, nous cherchons à déterminer des métriques spécifiques à l'anatomie et aux tissus, par agrégation linéaire de métriques connues.Nous proposons un algorithme d'apprentissage semi-supervisé pour estimer ces paramètres conditionnellement aux classes sémantiques des données, en utilisant un jeu de données faiblement annoté.Nous démontrons l'efficacité de notre approche sur trois jeux de données particulièrement difficiles dans le domaine de l'imagerie médicale, variables en terme de structures anatomiques et de modalités d'imagerie

    Toward Efficient and Robust Computer Vision for Large-Scale Edge Applications

    Get PDF
    The past decade has been witnessing remarkable advancements in computer vision and deep learning algorithms, ushering in a transformative wave of large-scale edge applications across various industries. These image processing methods, however, still encounter numerous challenges when it comes to meeting real-world demands, especially in terms of accuracy and latency at scale. Indeed, striking a balance among efficiency, robustness, and scalability remains a common obstacle. This dissertation investigates these issues in the context of different computer vision tasks, including image classification, semantic segmentation, depth estimation, and object detection. We introduce novel solutions, focusing on utilizing adjustable neural networks, joint multi-task architecture search, and generalized supervision interpolation. The first obstacle revolves around the ability to trade off between speed and accuracy in convolutional neural networks (CNNs) during inference on resource-constrained platforms. Despite their progress, CNNs are typically monolithic at runtime, which can present practical difficulties since computational budgets may vary over time. To address this, we introduce Any-Width Network, an adjustable-width CNN architecture that utilizes a novel Triangular Convolution module to enable fine-grained control over speed and accuracy during inference. The second challenge focuses on the computationally demanding nature of dense prediction tasks such as semantic segmentation and depth estimation. This issue becomes especially problematic for edge platforms with limited resources. To tackle this, we propose a novel and scalable framework named EDNAS. EDNAS leverages the synergistic relationship between Multi-Task Learning and hardware-aware Neural Architecture Search to significantly enhance on-device speed and accuracy of dense predictions. Finally, to improve the robustness of object detection, we introduce a novel data mixing augmentation. While mixing techniques such as Mixup have proven successful in image classification, their application to object detection is non-trivial due to spatial misalignment, foreground/background distinction, and instance multiplicity. To address these issues, we propose a generalized data mixing principle, Supervision Interpolation, and its simple yet effective implementation, LossMix. By addressing these challenges, this dissertation aims to facilitate better efficiency, accuracy, and scalability of computer vision and deep learning algorithms and contribute to the advancement of large-scale edge applications across different domains.Doctor of Philosoph

    Learning with Submodular Functions: A Convex Optimization Perspective

    Get PDF
    International audienceSubmodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the lovasz extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, we show how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance. By listing many examples of submodular functions, we review various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions
    corecore