411 research outputs found

    Bayesian Fused Lasso regression for dynamic binary networks

    Full text link
    We propose a multinomial logistic regression model for link prediction in a time series of directed binary networks. To account for the dynamic nature of the data we employ a dynamic model for the model parameters that is strongly connected with the fused lasso penalty. In addition to promoting sparseness, this prior allows us to explore the presence of change points in the structure of the network. We introduce fast computational algorithms for estimation and prediction using both optimization and Bayesian approaches. The performance of the model is illustrated using simulated data and data from a financial trading network in the NYMEX natural gas futures market. Supplementary material containing the trading network data set and code to implement the algorithms is available online

    Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers

    Full text link
    In this paper, we consider solving multiple-block separable convex minimization problems using alternating direction method of multipliers (ADMM). Motivated by the fact that the existing convergence theory for ADMM is mostly limited to the two-block case, we analyze in this paper, both theoretically and numerically, a new strategy that first transforms a multi-block problem into an equivalent two-block problem (either in the primal domain or in the dual domain) and then solves it using the standard two-block ADMM. In particular, we derive convergence results for this two-block ADMM approach to solve multi-block separable convex minimization problems, including an improved O(1/\epsilon) iteration complexity result. Moreover, we compare the numerical efficiency of this approach with the standard multi-block ADMM on several separable convex minimization problems which include basis pursuit, robust principal component analysis and latent variable Gaussian graphical model selection. The numerical results show that the multiple-block ADMM, although lacks theoretical convergence guarantees, typically outperforms two-block ADMMs

    Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection

    Full text link
    Chandrasekaran, Parrilo and Willsky (2010) proposed a convex optimization problem to characterize graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for large problems. In this paper, we propose two alternating direction methods for solving this problem. The first method is to apply the classical alternating direction method of multipliers to solve the problem as a consensus problem. The second method is a proximal gradient based alternating direction method of multipliers. Our methods exploit and take advantage of the special structure of the problem and thus can solve large problems very efficiently. Global convergence result is established for the proposed methods. Numerical results on both synthetic data and gene expression data show that our methods usually solve problems with one million variables in one to two minutes, and are usually five to thirty five times faster than a state-of-the-art Newton-CG proximal point algorithm

    Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty for Separable Convex Programs in Machine Learning

    Full text link
    Many problems in machine learning and other fields can be (re)for-mulated as linearly constrained separable convex programs. In most of the cases, there are multiple blocks of variables. However, the traditional alternating direction method (ADM) and its linearized version (LADM, obtained by linearizing the quadratic penalty term) are for the two-block case and cannot be naively generalized to solve the multi-block case. So there is great demand on extending the ADM based methods for the multi-block case. In this paper, we propose LADM with parallel splitting and adaptive penalty (LADMPSAP) to solve multi-block separable convex programs efficiently. When all the component objective functions have bounded subgradients, we obtain convergence results that are stronger than those of ADM and LADM, e.g., allowing the penalty parameter to be unbounded and proving the sufficient and necessary conditions} for global convergence. We further propose a simple optimality measure and reveal the convergence rate of LADMPSAP in an ergodic sense. For programs with extra convex set constraints, with refined parameter estimation we devise a practical version of LADMPSAP for faster convergence. Finally, we generalize LADMPSAP to handle programs with more difficult objective functions by linearizing part of the objective function as well. LADMPSAP is particularly suitable for sparse representation and low-rank recovery problems because its subproblems have closed form solutions and the sparsity and low-rankness of the iterates can be preserved during the iteration. It is also highly parallelizable and hence fits for parallel or distributed computing. Numerical experiments testify to the advantages of LADMPSAP in speed and numerical accuracy.Comment: Preliminary version published on Asian Conference on Machine Learning 201

    A Proximal Approach for a Class of Matrix Optimization Problems

    Full text link
    In recent years, there has been a growing interest in mathematical models leading to the minimization, in a symmetric matrix space, of a Bregman divergence coupled with a regularization term. We address problems of this type within a general framework where the regularization term is split in two parts, one being a spectral function while the other is arbitrary. A Douglas-Rachford approach is proposed to address such problems and a list of proximity operators is provided allowing us to consider various choices for the fit-to-data functional and for the regularization term. Numerical experiments show the validity of this approach for solving convex optimization problems encountered in the context of sparse covariance matrix estimation. Based on our theoretical results, an algorithm is also proposed for noisy graphical lasso where a precision matrix has to be estimated in the presence of noise. The nonconvexity of the resulting objective function is dealt with a majorization-minimization approach, i.e. by building a sequence of convex surrogates and solving the inner optimization subproblems via the aforementioned Douglas-Rachford procedure. We establish conditions for the convergence of this iterative scheme and we illustrate its good numerical performance with respect to state-of-the-art approaches
    • …
    corecore