123 research outputs found

    System Development of an Unmanned Ground Vehicle and Implementation of an Autonomous Navigation Module in a Mine Environment

    Get PDF
    There are numerous benefits to the insights gained from the exploration and exploitation of underground mines. There are also great risks and challenges involved, such as accidents that have claimed many lives. To avoid these accidents, inspections of the large mines were carried out by the miners, which is not always economically feasible and puts the safety of the inspectors at risk. Despite the progress in the development of robotic systems, autonomous navigation, localization and mapping algorithms, these environments remain particularly demanding for these systems. The successful implementation of the autonomous unmanned system will allow mine workers to autonomously determine the structural integrity of the roof and pillars through the generation of high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to any increasing hazards with proactive measures such as: sending workers to build/rebuild support structure to prevent accidents. The objective of this research is the development, implementation and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed to operate in these challenging underground mine environments. To autonomously navigate these environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical grade inertial measurement unit (IMU) for the localization and mapping through a tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping framework (LIO-SAM). The autonomous navigation module was implemented based upon the Fast likelihood-based collision avoidance with an extension to human-guided navigation and a terrain traversability analysis framework. In order to successfully operate and generate high-fidelity 3D maps, the system was rigorously tested in different environments and terrain to verify its robustness. To assess the capabilities, several localization, mapping and autonomous navigation missions were carried out in a coal mine environment. These tests allowed for the verification and tuning of the system to be able to successfully autonomously navigate and generate high-fidelity maps

    A review of laser scanning for geological and geotechnical applications in underground mining

    Full text link
    Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment. Although there are several published articles on laser scanning, there is a need to review them in the context of underground mining applications. To this end, a holistic review of laser scanning is presented including progress in 3D scanning systems, data capture/processing techniques and primary applications in underground mines. Laser scanning technology has advanced significantly in terms of mobility and mapping, but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency, dynamics, and environmental influences such as dust and water. Studies suggest that laser scanning has matured over the years for change detection, clearance measurements and structure mapping applications. However, there is scope for improvements in lithology identification, surface parameter measurements, logistic tracking and autonomous navigation. Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer, geodetic networking and processing capacity remain limiting factors. Nevertheless, laser scanners are becoming an integral part of mine automation thanks to their affordability, accuracy and mobility, which should support their widespread usage in years to come

    DEVELOPMENT OF AN AUTONOMOUS NAVIGATION SYSTEM FOR THE SHUTTLE CAR IN UNDERGROUND ROOM & PILLAR COAL MINES

    Get PDF
    In recent years, autonomous solutions in the multi-disciplinary field of the mining engineering have been an extremely popular applied research topic. The growing demand for mineral supplies combined with the steady decline in the available surface reserves has driven the mining industry to mine deeper underground deposits. These deposits are difficult to access, and the environment may be hazardous to mine personnel (e.g., increased heat, difficult ventilation conditions, etc.). Moreover, current mining methods expose the miners to numerous occupational hazards such as working in the proximity of heavy mining equipment, possible roof falls, as well as noise and dust. As a result, the mining industry, in its efforts to modernize and advance its methods and techniques, is one of the many industries that has turned to autonomous systems. Vehicle automation in such complex working environments can play a critical role in improving worker safety and mine productivity. One of the most time-consuming tasks of the mining cycle is the transportation of the extracted ore from the face to the main haulage facility or to surface processing facilities. Although conveyor belts have long been the autonomous transportation means of choice, there are still many cases where a discrete transportation system is needed to transport materials from the face to the main haulage system. The current dissertation presents the development of a navigation system for an autonomous shuttle car (ASC) in underground room and pillar coal mines. By introducing autonomous shuttle cars, the operator can be relocated from the dusty, noisy, and potentially dangerous environment of the underground mine to the safer location of a control room. This dissertation focuses on the development and testing of an autonomous navigation system for an underground room and pillar coal mine. A simplified relative localization system which determines the location of the vehicle relatively to salient features derived from on-board 2D LiDAR scans was developed for a semi-autonomous laboratory-scale shuttle car prototype. This simplified relative localization system is heavily dependent on and at the same time leverages the room and pillar geometry. Instead of keeping track of a global position of the vehicle relatively to a fixed coordinates frame, the proposed custom localization technique requires information regarding only the immediate surroundings. The followed approach enables the prototype to navigate around the pillars in real-time using a deterministic Finite-State Machine which models the behavior of the vehicle in the room and pillar mine with only a few states. Also, a user centered GUI has been developed that allows for a human user to control and monitor the autonomous vehicle by implementing the proposed navigation system. Experimental tests have been conducted in a mock mine in order to evaluate the performance of the developed system. A number of different scenarios simulating common missions that a shuttle car needs to undertake in a room and pillar mine. The results show a minimum success ratio of 70%

    Evaluation of SLAM algorithms for Search and Rescue applications

    Get PDF
    This research investigates three SLAM algorithms on a low-cost mobile robot and finds the algorithms’ performance through a set of experiments including different types of ground surfaces

    Development of a ground robot for indoor SLAM using Low‐Cost LiDAR and remote LabVIEW HMI

    Get PDF
    The simultaneous localization and mapping problem (SLAM) is crucial to autonomous navigation and robot mapping. The main purpose of this thesis is to develop a ground robot that implements SLAM to test the performance of the low‐cost RPLiDAR A1M8 by DFRobot. The HectorSLAM package, available in ROS was used with a Raspberry Pi to implement SLAM and build maps. These maps are sent to a remote desktop via TCP/IP communication to be displayed on a LabVIEW HMI where the user can also control robot. The LabVIEW HMI and the project in its entirety is intended to be as easy to use as possible to the layman, with many processes being automated to make this possible. The quality of the maps created by HectorSLAM and the RPLiDAR were evaluated both qualitatively and quanitatively to determine how useful the low‐cost LiDAR can be for this application. It is hoped that the apparatus developed in this project will be used with drones in the future for 3D mapping

    Lidar based map construction fusion method for underground coal mine shaft bottom

    Get PDF
    Intellectualization of coal mine is the technical support for high-quality development of coal industry, and robot replacement of key posts is the development trend of realizing efficient mining of coal with few people and no people. Simultaneous localization and mapping (SLAM) is one of the key technologies for autonomous movement and navigation of coal mine robots. The environment of underground coal mine is a typical unstructured environment, with narrow space, complex and changeable structure and uneven lighting, posing a severe challenge to the realization of SLAM in the underground coal mine. The research status of the map construction of the underground coal mine is summarized. In view of the shortcomings of the loopback detection of the LeGO-LOAM algorithm, the SegMatch algorithm is used to improve the loopback detection module of the LeGO-LOAM, the ICP algorithm is used to optimize the global map, and an improved algorithm integrating LeGO-LOAM and SegMatch is proposed, and the principle and implementation of the algorithm are discussed. The underground simulation scene experiments of coal mine were carried out, the mapping effect and accuracy of SLAM algorithm before and after the improvement were compared and analyzed, and the results showed that the map loopback effect constructed by the improved algorithm was better, and the estimated trajectory was smoother and more accurate. The construction method of two-dimensional occupied grid map is studied aiming at the navigation requirements, and the accuracy of the grid map constructed by this method is verified through experiments. The results show that the grid map after effectively filtering outliers such as dynamic obstacles has a mapping accuracy of 0.01 m, and the required storage space is 3 orders of magnitude lower than that of the point cloud map. The research results are helpful to the realization of SLAM and real-time positioning and autonomous navigation of the coal mine robot under the unstructured environment of the underground coal mine

    Multi-agent robotic systems and exploration algorithms: Applications for data collection in construction sites

    Full text link
    The construction industry has been notoriously slow to adopt new technology and embrace automation. This has resulted in lower efficiency and productivity compared to other industries where automation has been widely adopted. However, recent advancements in robotics and artificial intelligence offer a potential solution to this problem. In this study, a methodology is proposed to integrate multi-robotic systems in construction projects with the aim of increasing efficiency and productivity. The proposed approach involves the use of multiple robot and human agents working collaboratively to complete a construction task. The methodology was tested through a case study that involved 3D digitization of a small, occluded space using two robots and one human agent. The results show that integrating multi-agent robotic systems in construction can effectively overcome challenges and complete tasks efficiently. The implications of this study suggest that multi-agent robotic systems could revolutionize the industry
    corecore