706 research outputs found

    Applications of correlation inequalities to low density graphical codes

    Get PDF
    This contribution is based on the contents of a talk delivered at the Next-SigmaPhi conference held in Crete in August 2005. It is adressed to an audience of physicists with diverse horizons and does not assume any background in communications theory. Capacity approaching error correcting codes for channel communication known as Low Density Parity Check (LDPC) codes have attracted considerable attention from coding theorists in the last decade. Surprisingly strong connections with the theory of diluted spin glasses have been discovered. In this work we elucidate one new connection, namely that a class of correlation inequalities valid for gaussian spin glasses can be applied to the theoretical analysis of LDPC codes. This allows for a rigorous comparison between the so called (optimal) maximum a posteriori and the computationaly efficient belief propagation decoders. The main ideas of the proofs are explained and we refer to recent works for the more lengthy technical details.Comment: 11 pages, 3 figure

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Finite-Connectivity Spin-Glass Phase Diagrams and Low Density Parity Check Codes

    Get PDF
    We obtain phase diagrams of regular and irregular finite connectivity spin-glasses. Contact is firstly established between properties of the phase diagram and the performances of low density parity check codes (LDPC) within the Replica Symmetric (RS) ansatz. We then study the location of the dynamical and critical transition of these systems within the one step Replica Symmetry Breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that, away from the Nishimori line, in the low temperature region, the location of the dynamical transition line does change within the RSB theory, in comparison with the (RS) case. For LDPC decoding over the binary erasure channel we find, at zero temperature and rate R=1/4 an RS critical transition point located at p_c = 0.67 while the critical RSB transition point is located at p_c = 0.7450, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel (BSC) we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes within the RSB theory; the location of the dynamical transition point occurring at higher values of the channel noise. Possible practical implications to improve the performances of the state-of-the-art error correcting codes are discussed.Comment: 21 pages, 15 figure
    • …
    corecore