1,436 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    The Feasibility of Using Behavioural Profiling Technique for Mitigating Insider Threats: Review

    Get PDF
    Insider threat has become a serious issue to the many organizations. Various companies are increasingly deploying many information technologies to prevent unauthorized access to getting inside their system. Biometrics approaches have some techniques that contribute towards controlling the point of entry. However, these methods mainly are not able to continuously validate the users reliability. In contrast behavioral profiling is one of the biometrics technologies but it focusing on the activities of the users during using the system and comparing that with a previous history. This paper presents a comprehensive analysis, literature review and limitations on behavioral profiling approach and to what extent that can be used for mitigating insider misuse

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    Collaborative Edge Computing in Mobile Internet of Things

    Get PDF
    The proliferation of Internet-of-Things (IoT) devices has opened a plethora of opportunities for smart networking, connected applications and data driven intelligence. The large distribution of IoT devices within a finite geographical area and the pervasiveness of wireless networking present an opportunity for such devices to collaborate. Centralized decision systems have so far dominated the field, but they are starting to lose relevance in the wake of heterogeneity of the device pool. This thesis is driven by three key hypothesis: (i) In solving complex problems, it is possible to harness unused compute capabilities of the device pool instead of always relying on centralized infrastructures; (ii) When possible, collaborating with neighbors to identify security threats scales well in large environments; (iii) Given the abundance of data from a large pool of devices with possible privacy constraints, collaborative learning drives scalable intelligence. This dissertation defines three frameworks for these hypotheses; collaborative computing, collaborative security and collaborative privacy intelligence. The first framework, Opportunistic collaboration among IoT devices for workload execution, profiles applications and matches resource grants to requests using blockchain to put excess capacity at the edge to good use. The evaluation results show app execution latency comparable to the centralized edge and an outstanding resource utilization at the edge. The second framework, Integrity Threat Identification for Distributed IoT, uses a new spatio-temporal algorithm, based on Local Outlier Factor (LOF) uniquely using mean and variance collaboratively across spatial and temporal dimensions to identify potential threats. Evaluation results on real world underground sensor dataset (Thoreau) show good accuracy and efficiency. The third frame- work, Collaborative Privacy Intelligence, aims to understand privacy invasion by reverse engineering a user’s privacy model using sensors data, and score the level of intrusion for various dimensions of privacy. By having sensors track activities, and learning rule books from the collective insights, we are able to predict ones privacy attributes and states, with reasonable accuracy. As the Edge gains more prominence with computation moving closer to the data source, the above frameworks will drive key solutions and research in areas of Edge federation and collaboration

    Deep neural mobile networking

    Get PDF
    The next generation of mobile networks is set to become increasingly complex, as these struggle to accommodate tremendous data traffic demands generated by ever-more connected devices that have diverse performance requirements in terms of throughput, latency, and reliability. This makes monitoring and managing the multitude of network elements intractable with existing tools and impractical for traditional machine learning algorithms that rely on hand-crafted feature engineering. In this context, embedding machine intelligence into mobile networks becomes necessary, as this enables systematic mining of valuable information from mobile big data and automatically uncovering correlations that would otherwise have been too difficult to extract by human experts. In particular, deep learning based solutions can automatically extract features from raw data, without human expertise. The performance of artificial intelligence (AI) has achieved in other domains draws unprecedented interest from both academia and industry in employing deep learning approaches to address technical challenges in mobile networks. This thesis attacks important problems in the mobile networking area from various perspectives by harnessing recent advances in deep neural networks. As a preamble, we bridge the gap between deep learning and mobile networking by presenting a survey on the crossovers between the two areas. Secondly, we design dedicated deep learning architectures to forecast mobile traffic consumption at city scale. In particular, we tailor our deep neural network models to different mobile traffic data structures (i.e. data originating from urban grids and geospatial point-cloud antenna deployments) to deliver precise prediction. Next, we propose a mobile traffic super resolution (MTSR) technique to achieve coarse-to-fine grain transformations on mobile traffic measurements using generative adversarial network architectures. This can provide insightful knowledge to mobile operators about mobile traffic distribution, while effectively reducing the data post-processing overhead. Subsequently, the mobile traffic decomposition (MTD) technique is proposed to break the aggregated mobile traffic measurements into service-level time series, by using a deep learning based framework. With MTD, mobile operators can perform more efficient resource allocation for network slicing (i.e, the logical partitioning of physical infrastructure) and alleviate the privacy concerns that come with the extensive use of deep packet inspection. Finally, we study the robustness of network specific deep anomaly detectors with a realistic black-box threat model and propose reliable solutions for defending against attacks that seek to subvert existing network deep learning based intrusion detection systems (NIDS). Lastly, based on the results obtained, we identify important research directions that are worth pursuing in the future, including (i) serving deep learning with massive high-quality data (ii) deep learning for spatio-temporal mobile data mining (iii) deep learning for geometric mobile data mining (iv) deep unsupervised learning in mobile networks, and (v) deep reinforcement learning for mobile network control. Overall, this thesis demonstrates that deep learning can underpin powerful tools that address data-driven problems in the mobile networking domain. With such intelligence, future mobile networks can be monitored and managed more effectively and thus higher user quality of experience can be guaranteed
    • …
    corecore