2,679 research outputs found

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    CODIE: Controlled Data and Interest Evaluation in Vehicular Named Data Networks

    Full text link
    [EN] Recently, named data networking (NDN) has been proposed as a promising architecture for future Internet technologies. NDN is an extension to the content-centric network (CCN) and is expected to support various applications in vehicular communications [ vehicular NDN (VNDN)]. VNDN basically relies on naming the content rather than using end-to-end device names. In VNDN, a vehicle broadcasts an "Interest" packet for the required "content," regardless of end-to-end connectivity with servers or other vehicles and known as a "consumer." In response, a vehicle with the content replies to the Interest packet with a "Data" packet and named as a "provider." However, the simple VNDN architecture faces several challenges such as consumer/provider mobility and Interest/Data packet(s) forwarding. In VNDN, for the most part, the Data packet is sent along the reverse path of the related Interest packet. However, there is no extensive simulated reference available in the literature to support this argument. In this paper, therefore, we first analyze the propagation behavior of Interest and Data packets in the vehicular ad hoc network (VANET) environment through extensive simulations. Second, we propose the "CODIE" scheme to control the Data flooding/broadcast storm in the naive VNDN. The main idea is to allow the consumer vehicle to start hop counter in Interest packet. Upon receiving this Interest by any potential provider, a data dissemination limit (DDL) value stores the number of hops and a data packet needs to travel back. Simulation results show that CODIE forwards fewer copies of data packets processed (CDPP) while achieving similar interest satisfaction rate (ISR), as compared with the naive VNDN. In addition, we also found that CODIE also minimizes the overall interest satisfaction delay (ISD), respectively.This work was supported by the Ministry of Science, ICT and Future Planning, South Korea, under Grant IITP-2015-H8601-15-1002 of the Convergence Information Technology Research Center supervised by the Institute for Information and Communications Technology Promotion. The review of this paper was coordinated by Editors of CVS. (Corresponding author: Dongkyun Kim.)Ahmed, SH.; Bouk, SH.; Yaqub, MA.; Kim, D.; Song, H.; Lloret, J. (2016). CODIE: Controlled Data and Interest Evaluation in Vehicular Named Data Networks. IEEE Transactions on Vehicular Technology. 65(6):3954-3963. https://doi.org/10.1109/TVT.2016.2558650S3954396365

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving
    • …
    corecore