2,251 research outputs found

    C-NEST: cloudlet based privacy preserving multidimensional data stream approach for healthcare electronics.

    Get PDF
    The Medical Internet of Things (MIoT) facilitates extensive connections between cyber and physical "things" allowing for effective data fusion and remote patient diagnosis and monitoring. However, there is a risk of incorrect diagnosis when data is tampered with from the cloud or a hospital due to third-party storage services. Most of the existing systems use an owner-centric data integrity verification mechanism, which is not computationally feasible for lightweight wearable-sensor systems because of limited computing capacity and privacy leakage issues. In this regard, we design a 2-step Privacy-Preserving Multidimensional Data Stream (PPMDS) approach based on a cloudlet framework with an Uncertain Data-integrity Optimization (UDO) model and Sparse-Centric SVM (SCS) model. The UDO model enhances health data security with an adaptive cryptosystem called Cloudlet-Nonsquare Encryption Secret Transmission (C-NEST) strategy by avoiding medical disputes during data streaming based on novel signature and key generation strategies. The SCS model effectively classifies incoming queries for easy access to data by solving scalability issues. The cloudlet server measures data integrity and authentication factors to optimize third-party verification burden and computational cost. The simulation outcomes show that the proposed system optimizes average data leakage error rate by 27%, query response time and average data transmission time are reduced by 31%, and average communication-computation cost are reduced by 61% when measured against state-of-the-art approaches

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Efficient data uncertainty management for health industrial internet of things using machine learning

    Full text link
    [EN] In modern technologies, the industrial internet of things (IIoT) has gained rapid growth in the fields of medical, transportation, and engineering. It consists of a self-governing configuration and cooperated with sensors to collect, process, and analyze the processes of a real-time system. In the medical system, healthcare IIoT (HIIoT) provides analytics of a huge amount of data and offers low-cost storage systems with the collaboration of cloud systems for the monitoring of patient information. However, it faces certain connectivity, nodes failure, and rapid data delivery challenges in the development of e-health systems. Therefore, to address such concerns, this paper presents an efficient data uncertainty management model for HIIoT using machine learning (EDM-ML) with declining nodes prone and data irregularity. Its aim is to increase the efficacy for the collection and processing of real-time data along with smart functionality against anonymous nodes. It developed an algorithm for improving the health services against disruption of network status and overheads. Also, the multi-objective function decreases the uncertainty in the management of medical data. Furthermore, it expects the routing decisions using a machine learning-based algorithm and increases the uniformity in health operations by balancing the network resources and trust distribution. Finally, it deals with a security algorithm and established control methods to protect the distributed data in the exposed health industry. Extensive simulations are performed, and their results reveal the significant performance of the proposed model in the context of uncertainty and intelligence than benchmark algorithms.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh Saudi Arabia. Authors are thankful for the support.Haseeb, K.; Saba, T.; Rehman, A.; Ahmed, I.; Lloret, J. (2021). Efficient data uncertainty management for health industrial internet of things using machine learning. International Journal of Communication Systems. 34(16):1-14. https://doi.org/10.1002/dac.4948114341

    Sustainability Model for the Internet of Health Things (IoHT) Using Reinforcement Learning with Mobile Edge Secured Services

    Full text link
    [EN] In wireless multimedia networks, the Internet of Things (IoT) and visual sensors are used to interpret and exchange vast data in the form of images. The digital images are subsequently delivered to cloud systems via a sink node, where they are interacted with by smart communication systems using physical devices. Visual sensors are becoming a more significant part of digital systems and can help us live in a more intelligent world. However, for IoT-based data analytics, optimizing communications overhead by balancing the usage of energy and bandwidth resources is a new research challenge. Furthermore, protecting the IoT network's data from anonymous attackers is critical. As a result, utilizing machine learning, this study proposes a mobile edge computing model with a secured cloud (MEC-Seccloud) for a sustainable Internet of Health Things (IoHT), providing real-time quality of service (QoS) for big data analytics while maintaining the integrity of green technologies. We investigate a reinforcement learning optimization technique to enable sensor interaction by examining metaheuristic methods and optimally transferring health-related information with the interaction of mobile edges. Furthermore, two-phase encryptions are used to guarantee data concealment and to provide secured wireless connectivity with cloud networks. The proposed model has shown considerable performance for various network metrics compared with earlier studies.This work has been partially funded by the "La Fundacion para el Fomento de la Investigacion Sanitaria y Biomedica de la Comunitat Valenciana (Fisabio)" through the project PULSIDATA (A43). This research is supported by the Artificial Intelligence & Data Analytics Lab (AIDA), CCIS Prince Sultan University, Riyadh, Saudi Arabia. The authors are thankful for technical support.Rehman, A.; Saba, T.; Haseeb, K.; Alam, T.; Lloret, J. (2022). Sustainability Model for the Internet of Health Things (IoHT) Using Reinforcement Learning with Mobile Edge Secured Services. Sustainability. 14(19):1-14. https://doi.org/10.3390/su141912185114141

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    A HYBRIDIZED ENCRYPTION SCHEME BASED ON ELLIPTIC CURVE CRYPTOGRAPHY FOR SECURING DATA IN SMART HEALTHCARE

    Get PDF
    Recent developments in smart healthcare have brought us a great deal of convenience. Connecting common objects to the Internet is made possible by the Internet of Things (IoT). These connected gadgets have sensors and actuators for data collection and transfer. However, if users' private health information is compromised or exposed, it will seriously harm their privacy and may endanger their lives. In order to encrypt data and establish perfectly alright access control for such sensitive information, attribute-based encryption (ABE) has typically been used. Traditional ABE, however, has a high processing overhead. As a result, an effective security system algorithm based on ABE and Fully Homomorphic Encryption (FHE) is developed to protect health-related data. ABE is a workable option for one-to-many communication and perfectly alright access management of encrypting data in a cloud environment. Without needing to decode the encrypted data, cloud servers can use the FHE algorithm to take valid actions on it. Because of its potential to provide excellent security with a tiny key size, elliptic curve cryptography (ECC) algorithm is also used. As a result, when compared to related existing methods in the literature, the suggested hybridized algorithm (ABE-FHE-ECC) has reduced computation and storage overheads. A comprehensive safety evidence clearly shows that the suggested method is protected by the Decisional Bilinear Diffie-Hellman postulate. The experimental results demonstrate that this system is more effective for devices with limited resources than the conventional ABE when the system’s performance is assessed by utilizing standard model

    Wireless body area network revisited

    Get PDF
    Rapid growth of wireless body area networks (WBANs) technology allowed the fast and secured acquisition as well as exchange of vast amount of data information in diversified fields. WBANs intend to simplify and improve the speed, accuracy, and reliability of communica-tions from sensors (interior motors) placed on and/or close to the human body, reducing the healthcare cost remarkably. However, the secu-rity of sensitive data transfer using WBANs and subsequent protection from adversaries attack is a major issue. Depending on the types of applications, small and high sensitive sensors having several nodes obtained from invasive/non-invasive micro- and nano- technology can be installed on the human body to capture useful information. Lately, the use of micro-electro-mechanical systems (MEMS) and integrated circuits in wireless communications (WCs) became widespread because of their low-power operation, intelligence, accuracy, and miniaturi-zation. IEEE 802.15.6 and 802.15.4j standards have already been set to specifically regulate the medical networks and WBANs. In this view, present communication provides an all-inclusive overview of the past development, recent progress, challenges and future trends of security technology related to WBANs
    • …
    corecore