173 research outputs found

    Building Reservoir Computing Hardware Using Low Energy-Barrier Magnetics

    Full text link
    Biologically inspired recurrent neural networks, such as reservoir computers are of interest in designing spatio-temporal data processors from a hardware point of view due to the simple learning scheme and deep connections to Kalman filters. In this work we discuss using in-depth simulation studies a way to construct hardware reservoir computers using an analog stochastic neuron cell built from a low energy-barrier magnet based magnetic tunnel junction and a few transistors. This allows us to implement a physical embodiment of the mathematical model of reservoir computers. Compact implementation of reservoir computers using such devices may enable building compact, energy-efficient signal processors for standalone or in-situ machine cognition in edge devices.Comment: To be presented at International Conference on Neuromorphic Systems 202

    Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions

    Full text link
    Hierarchical probabilistic models are able to use a large number of parameters to create a model with a high representation power. However, it is well known that increasing the number of parameters also increases the complexity of the model which leads to a bias-variance trade-off. Although it is a classical problem, the bias-variance trade-off between hidden layers and higher-order interactions have not been well studied. In our study, we propose an efficient inference algorithm for the log-linear formulation of the higher-order Boltzmann machine using a combination of Gibbs sampling and annealed importance sampling. We then perform a bias-variance decomposition to study the differences in hidden layers and higher-order interactions. Our results have shown that using hidden layers and higher-order interactions have a comparable error with a similar order of magnitude and using higher-order interactions produce less variance for smaller sample size.Comment: 8 pages, 28 figures, accepted to the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    VIDEO FOREGROUND LOCALIZATION FROM TRADITIONAL METHODS TO DEEP LEARNING

    Get PDF
    These days, detection of Visual Attention Regions (VAR), such as moving objects has become an integral part of many Computer Vision applications, viz. pattern recognition, object detection and classification, video surveillance, autonomous driving, human-machine interaction (HMI), and so forth. The moving object identification using bounding boxes has matured to the level of localizing the objects along their rigid borders and the process is called foreground localization (FGL). Over the decades, many image segmentation methodologies have been well studied, devised, and extended to suit the video FGL. Despite that, still, the problem of video foreground (FG) segmentation remains an intriguing task yet appealing due to its ill-posed nature and myriad of applications. Maintaining spatial and temporal coherence, particularly at object boundaries, persists challenging, and computationally burdensome. It even gets harder when the background possesses dynamic nature, like swaying tree branches or shimmering water body, and illumination variations, shadows cast by the moving objects, or when the video sequences have jittery frames caused by vibrating or unstable camera mounts on a surveillance post or moving robot. At the same time, in the analysis of traffic flow or human activity, the performance of an intelligent system substantially depends on its robustness of localizing the VAR, i.e., the FG. To this end, the natural question arises as what is the best way to deal with these challenges? Thus, the goal of this thesis is to investigate plausible real-time performant implementations from traditional approaches to modern-day deep learning (DL) models for FGL that can be applicable to many video content-aware applications (VCAA). It focuses mainly on improving existing methodologies through harnessing multimodal spatial and temporal cues for a delineated FGL. The first part of the dissertation is dedicated for enhancing conventional sample-based and Gaussian mixture model (GMM)-based video FGL using probability mass function (PMF), temporal median filtering, and fusing CIEDE2000 color similarity, color distortion, and illumination measures, and picking an appropriate adaptive threshold to extract the FG pixels. The subjective and objective evaluations are done to show the improvements over a number of similar conventional methods. The second part of the thesis focuses on exploiting and improving deep convolutional neural networks (DCNN) for the problem as mentioned earlier. Consequently, three models akin to encoder-decoder (EnDec) network are implemented with various innovative strategies to improve the quality of the FG segmentation. The strategies are not limited to double encoding - slow decoding feature learning, multi-view receptive field feature fusion, and incorporating spatiotemporal cues through long-shortterm memory (LSTM) units both in the subsampling and upsampling subnetworks. Experimental studies are carried out thoroughly on all conditions from baselines to challenging video sequences to prove the effectiveness of the proposed DCNNs. The analysis demonstrates that the architectural efficiency over other methods while quantitative and qualitative experiments show the competitive performance of the proposed models compared to the state-of-the-art

    Novel Detection and Analysis using Deep Variational Autoencoders

    Get PDF
    This paper presents a Novel IdentiïŹcation System which uses generative modeling techniques and Gaussian Mixture Models (GMMs) to identify the main process variables involved in a novel event from multivariate data. Features are generated and subsequently dimensionally reduced by using a Variational Autoencoder (VAE) supplemented by a denoising criterion and a ÎČ disentangling method. The GMM parameters are learned using the Expectation Maximization(EM) algorithm on features collected from only normal operating conditions. A one-class classiïŹcation is achieved by thresholding the likelihoods by a statistically derived value. The Novel IdentiïŹcation method is veriïŹed as a detection method on existing Radio Frequency (RF) Generators and standard classiïŹcation datasets. The RF dataset contains 2 diïŹ€erent models of generators with almost 100 unique units tested. Novel Detection on these generators achieved an average testing true positive rate of 97.31% with an overall target class accuracy of 98.16%. A second application has the network evaluate process variables of the RF generators when a novel event is detected. This is achieved by using the VAE decoding layers to map the GMM parameters back to a space equivalent to the original input, resulting in a way to directly estimate the process variables ïŹtness

    On Motion Analysis in Computer Vision with Deep Learning: Selected Case Studies

    Get PDF
    Motion analysis is one of the essential enabling technologies in computer vision. Despite recent significant advances, image-based motion analysis remains a very challenging problem. This challenge arises because the motion features are extracted directory from a sequence of images without any other meta data information. Extracting motion information (features) is inherently more difficult than in other computer vision disciplines. In a traditional approach, the motion analysis is often formulated as an optimisation problem, with the motion model being hand-crafted to reflect our understanding of the problem domain. The critical element of these traditional methods is a prior assumption about the model of motion believed to represent a specific problem. Data analytics’ recent trend is to replace hand-crafted prior assumptions with a model learned directly from observational data with no, or very limited, prior assumptions about that model. Although known for a long time, these approaches, based on machine learning, have been shown competitive only very recently due to advances in the so-called deep learning methodologies. This work's key aim has been to investigate novel approaches, utilising the deep learning methodologies, for motion analysis where the motion model is learned directly from observed data. These new approaches have focused on investigating the deep network architectures suitable for the effective extraction of spatiotemporal information. Due to the estimated motion parameters' volume and structure, it is frequently difficult or even impossible to obtain relevant ground truth data. Missing ground truth leads to choose the unsupervised learning methodologies which is usually represents challenging choice to utilize in already challenging high dimensional motion representation of the image sequence. The main challenge with unsupervised learning is to evaluate if the algorithm can learn the data model directly from the data only without any prior knowledge presented to the deep learning model during In this project, an emphasis has been put on the unsupervised learning approaches. Owning to a broad spectrum of computer vision problems and applications related to motion analysis, the research reported in the thesis has focused on three specific motion analysis challenges and corresponding practical case studies. These include motion detection and recognition, as well as 2D and 3D motion field estimation. Eyeblinks quantification has been used as a case study for the motion detection and recognition problem. The approach proposed for this problem consists of a novel network architecture processing weakly corresponded images in an action completion regime with learned spatiotemporal image features fused using cascaded recurrent networks. The stereo-vision disparity estimation task has been selected as a case study for the 2D motion field estimation problem. The proposed method directly estimates occlusion maps using novel convolutional neural network architecture that is trained with a custom-designed loss function in an unsupervised manner. The volumetric data registration task has been chosen as a case study for the 3D motion field estimation problem. The proposed solution is based on the 3D CNN, with a novel architecture featuring a Generative Adversarial Network used during training to improve network performance for unseen data. All the proposed networks demonstrated a state-of-the-art performance compared to other corresponding methods reported in the literature on a number of assessment metrics. In particular, the proposed architecture for 3D motion field estimation has shown to outperform the previously reported manual expert-guided registration methodology

    Tiny Machine Learning Environment: Enabling Intelligence on Constrained Devices

    Get PDF
    Running machine learning algorithms (ML) on constrained devices at the extreme edge of the network is problematic due to the computational overhead of ML algorithms, available resources on the embedded platform, and application budget (i.e., real-time requirements, power constraints, etc.). This required the development of specific solutions and development tools for what is now referred to as TinyML. In this dissertation, we focus on improving the deployment and performance of TinyML applications, taking into consideration the aforementioned challenges, especially memory requirements. This dissertation contributed to the construction of the Edge Learning Machine environment (ELM), a platform-independent open-source framework that provides three main TinyML services, namely shallow ML, self-supervised ML, and binary deep learning on constrained devices. In this context, this work includes the following steps, which are reflected in the thesis structure. First, we present the performance analysis of state-of-the-art shallow ML algorithms including dense neural networks, implemented on mainstream microcontrollers. The comprehensive analysis in terms of algorithms, hardware platforms, datasets, preprocessing techniques, and configurations shows similar performance results compared to a desktop machine and highlights the impact of these factors on overall performance. Second, despite the assumption that TinyML only permits models inference provided by the scarcity of resources, we have gone a step further and enabled self-supervised on-device training on microcontrollers and tiny IoT devices by developing the Autonomous Edge Pipeline (AEP) system. AEP achieves comparable accuracy compared to the typical TinyML paradigm, i.e., models trained on resource-abundant devices and then deployed on microcontrollers. Next, we present the development of a memory allocation strategy for convolutional neural networks (CNNs) layers, that optimizes memory requirements. This approach reduces the memory footprint without affecting accuracy nor latency. Moreover, e-skin systems share the main requirements of the TinyML fields: enabling intelligence with low memory, low power consumption, and low latency. Therefore, we designed an efficient Tiny CNN architecture for e-skin applications. The architecture leverages the memory allocation strategy presented earlier and provides better performance than existing solutions. A major contribution of the thesis is given by CBin-NN, a library of functions for implementing extremely efficient binary neural networks on constrained devices. The library outperforms state of the art NN deployment solutions by drastically reducing memory footprint and inference latency. All the solutions proposed in this thesis have been implemented on representative devices and tested in relevant applications, of which results are reported and discussed. The ELM framework is open source, and this work is clearly becoming a useful, versatile toolkit for the IoT and TinyML research and development community
    • 

    corecore