60,117 research outputs found

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Contextual models for object detection using boosted random fields

    Get PDF
    We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes

    Deeply Learning the Messages in Message Passing Inference

    Full text link
    Deep structured output learning shows great promise in tasks like semantic image segmentation. We proffer a new, efficient deep structured model learning scheme, in which we show how deep Convolutional Neural Networks (CNNs) can be used to estimate the messages in message passing inference for structured prediction with Conditional Random Fields (CRFs). With such CNN message estimators, we obviate the need to learn or evaluate potential functions for message calculation. This confers significant efficiency for learning, since otherwise when performing structured learning for a CRF with CNN potentials it is necessary to undertake expensive inference for every stochastic gradient iteration. The network output dimension for message estimation is the same as the number of classes, in contrast to the network output for general CNN potential functions in CRFs, which is exponential in the order of the potentials. Hence CNN message learning has fewer network parameters and is more scalable for cases that a large number of classes are involved. We apply our method to semantic image segmentation on the PASCAL VOC 2012 dataset. We achieve an intersection-over-union score of 73.4 on its test set, which is the best reported result for methods using the VOC training images alone. This impressive performance demonstrates the effectiveness and usefulness of our CNN message learning method.Comment: 11 pages. Appearing in Proc. The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS), 2015, Montreal, Canad
    • …
    corecore