966 research outputs found

    Statistical/Geometric Techniques for Object Representation and Recognition

    Get PDF
    Object modeling and recognition are key areas of research in computer vision and graphics with wide range of applications. Though research in these areas is not new, traditionally most of it has focused on analyzing problems under controlled environments. The challenges posed by real life applications demand for more general and robust solutions. The wide variety of objects with large intra-class variability makes the task very challenging. The difficulty in modeling and matching objects also vary depending on the input modality. In addition, the easy availability of sensors and storage have resulted in tremendous increase in the amount of data that needs to be processed which requires efficient algorithms suitable for large-size databases. In this dissertation, we address some of the challenges involved in modeling and matching of objects in realistic scenarios. Object matching in images require accounting for large variability in the appearance due to changes in illumination and view point. Any real world object is characterized by its underlying shape and albedo, which unlike the image intensity are insensitive to changes in illumination conditions. We propose a stochastic filtering framework for estimating object albedo from a single intensity image by formulating the albedo estimation as an image estimation problem. We also show how this albedo estimate can be used for illumination insensitive object matching and for more accurate shape recovery from a single image using standard shape from shading formulation. We start with the simpler problem where the pose of the object is known and only the illumination varies. We then extend the proposed approach to handle unknown pose in addition to illumination variations. We also use the estimated albedo maps for another important application, which is recognizing faces across age progression. Many approaches which address the problem of modeling and recognizing objects from images assume that the underlying objects are of diffused texture. But most real world objects exhibit a combination of diffused and specular properties. We propose an approach for separating the diffused and specular reflectance from a given color image so that the algorithms proposed for objects of diffused texture become applicable to a much wider range of real world objects. Representing and matching the 2D and 3D geometry of objects is also an integral part of object matching with applications in gesture recognition, activity classification, trademark and logo recognition, etc. The challenge in matching 2D/3D shapes lies in accounting for the different rigid and non-rigid deformations, large intra-class variability, noise and outliers. In addition, since shapes are usually represented as a collection of landmark points, the shape matching algorithm also has to deal with the challenges of missing or unknown correspondence across these data points. We propose an efficient shape indexing approach where the different feature vectors representing the shape are mapped to a hash table. For a query shape, we show how the similar shapes in the database can be efficiently retrieved without the need for establishing correspondence making the algorithm extremely fast and scalable. We also propose an approach for matching and registration of 3D point cloud data across unknown or missing correspondence using an implicit surface representation. Finally, we discuss possible future directions of this research

    A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies Using a Hybrid Generative-Descriptive Model

    Full text link
    A graph theoretic approach is proposed for object shape representation in a hierarchical compositional architecture called Compositional Hierarchy of Parts (CHOP). In the proposed approach, vocabulary learning is performed using a hybrid generative-descriptive model. First, statistical relationships between parts are learned using a Minimum Conditional Entropy Clustering algorithm. Then, selection of descriptive parts is defined as a frequent subgraph discovery problem, and solved using a Minimum Description Length (MDL) principle. Finally, part compositions are constructed by compressing the internal data representation with discovered substructures. Shape representation and computational complexity properties of the proposed approach and algorithms are examined using six benchmark two-dimensional shape image datasets. Experiments show that CHOP can employ part shareability and indexing mechanisms for fast inference of part compositions using learned shape vocabularies. Additionally, CHOP provides better shape retrieval performance than the state-of-the-art shape retrieval methods.Comment: Paper : 17 pages. 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III, pp 566-581. Supplementary material can be downloaded from http://link.springer.com/content/esm/chp:10.1007/978-3-319-10578-9_37/file/MediaObjects/978-3-319-10578-9_37_MOESM1_ESM.pd

    Indexing and Retrieval of 3D Articulated Geometry Models

    Get PDF
    In this PhD research study, we focus on building a content-based search engine for 3D articulated geometry models. 3D models are essential components in nowadays graphic applications, and are widely used in the game, animation and movies production industry. With the increasing number of these models, a search engine not only provides an entrance to explore such a huge dataset, it also facilitates sharing and reusing among different users. In general, it reduces production costs and time to develop these 3D models. Though a lot of retrieval systems have been proposed in recent years, search engines for 3D articulated geometry models are still in their infancies. Among all the works that we have surveyed, reliability and efficiency are the two main issues that hinder the popularity of such systems. In this research, we have focused our attention mainly to address these two issues. We have discovered that most existing works design features and matching algorithms in order to reflect the intrinsic properties of these 3D models. For instance, to handle 3D articulated geometry models, it is common to extract skeletons and use graph matching algorithms to compute the similarity. However, since this kind of feature representation is complex, it leads to high complexity of the matching algorithms. As an example, sub-graph isomorphism can be NP-hard for model graph matching. Our solution is based on the understanding that skeletal matching seeks correspondences between the two comparing models. If we can define descriptive features, the correspondence problem can be solved by bag-based matching where fast algorithms are available. In the first part of the research, we propose a feature extraction algorithm to extract such descriptive features. We then convert the skeletal matching problems into bag-based matching. We further define metric similarity measure so as to support fast search. We demonstrate the advantages of this idea in our experiments. The improvement on precision is 12\% better at high recall. The indexing search of 3D model is 24 times faster than the state of the art if only the first relevant result is returned. However, improving the quality of descriptive features pays the price of high dimensionality. Curse of dimensionality is a notorious problem on large multimedia databases. The computation time scales exponentially as the dimension increases, and indexing techniques may not be useful in such situation. In the second part of the research, we focus ourselves on developing an embedding retrieval framework to solve the high dimensionality problem. We first argue that our proposed matching method projects 3D models on manifolds. We then use manifold learning technique to reduce dimensionality and maximize intra-class distances. We further propose a numerical method to sub-sample and fast search databases. To preserve retrieval accuracy using fewer landmark objects, we propose an alignment method which is also beneficial to existing works for fast search. The advantages of the retrieval framework are demonstrated in our experiments that it alleviates the problem of curse of dimensionality. It also improves the efficiency (3.4 times faster) and accuracy (30\% more accurate) of our matching algorithm proposed above. In the third part of the research, we also study a closely related area, 3D motions. 3D motions are captured by sticking sensor on human beings. These captured data are real human motions that are used to animate 3D articulated geometry models. Creating realistic 3D motions is an expensive and tedious task. Although 3D motions are very different from 3D articulated geometry models, we observe that existing works also suffer from the problem of temporal structure matching. This also leads to low efficiency in the matching algorithms. We apply the same idea of bag-based matching into the work of 3D motions. From our experiments, the proposed method has a 13\% improvement on precision at high recall and is 12 times faster than existing works. As a summary, we have developed algorithms for 3D articulated geometry models and 3D motions, covering feature extraction, feature matching, indexing and fast search methods. Through various experiments, our idea of converting restricted matching to bag-based matching improves matching efficiency and reliability. These have been shown in both 3D articulated geometry models and 3D motions. We have also connected 3D matching to the area of manifold learning. The embedding retrieval framework not only improves efficiency and accuracy, but has also opened a new area of research

    Unsupervised Graph-based Rank Aggregation for Improved Retrieval

    Full text link
    This paper presents a robust and comprehensive graph-based rank aggregation approach, used to combine results of isolated ranker models in retrieval tasks. The method follows an unsupervised scheme, which is independent of how the isolated ranks are formulated. Our approach is able to combine arbitrary models, defined in terms of different ranking criteria, such as those based on textual, image or hybrid content representations. We reformulate the ad-hoc retrieval problem as a document retrieval based on fusion graphs, which we propose as a new unified representation model capable of merging multiple ranks and expressing inter-relationships of retrieval results automatically. By doing so, we claim that the retrieval system can benefit from learning the manifold structure of datasets, thus leading to more effective results. Another contribution is that our graph-based aggregation formulation, unlike existing approaches, allows for encapsulating contextual information encoded from multiple ranks, which can be directly used for ranking, without further computations and post-processing steps over the graphs. Based on the graphs, a novel similarity retrieval score is formulated using an efficient computation of minimum common subgraphs. Finally, another benefit over existing approaches is the absence of hyperparameters. A comprehensive experimental evaluation was conducted considering diverse well-known public datasets, composed of textual, image, and multimodal documents. Performed experiments demonstrate that our method reaches top performance, yielding better effectiveness scores than state-of-the-art baseline methods and promoting large gains over the rankers being fused, thus demonstrating the successful capability of the proposal in representing queries based on a unified graph-based model of rank fusions

    Embedding Retrieval of Articulated Geometry Models

    Get PDF

    A case for image quering through image spots

    Get PDF
    We present an image spot query technique as an alternative for content-based image retrieval based on similarity over feature vectors. Image spots are selective parts of a query image designated by users as highly relevant for the desired answer set. Compared to traditional approaches, our technique allows users to search image databases for local (spatial, color and color transition) characteristics rather than global features. When a user query is presented to our search engine, the engine does not impose any (similarity, ranking, cutoff) policy of its own on the answer set; it performs an exact match based on the query terms against the database. Semantic higher concepts such as weighing the relevance of query terms, is left to the user as a task while refining their query to reach the desired answer set. Given the hundreds of feature terms involved in query spots, refinement algorithms are to be encapsulated in separate applications, which act as an intermediary between our search engine and the users

    AGSF: Adaptive graph formulation and hand-crafted graph spectral features for shape representation

    Get PDF
    Addressing intra-class variation in high similarity shapes is a challenging task in shape representation due to highly common local and global shape characteristics. Therefore, this paper proposes a new set of hand-crafted features for shape recognition by exploiting spectral features of the underlying graph adaptive connectivity formed by the shape characteristics. To achieve this, the paper proposes a new method for formulating an adaptively connected graph on the nodes of the shape outline. The adaptively connected graph is analysed in terms of its spectral bases followed by extracting hand-crafted adaptive graph spectral features (AGSF) to represent both global and local characteristics of the shape. Experimental evaluation using five 2D shape datasets and four challenging 3D shape datasets shows improvements with respect to the existing hand-crafted feature methods up to 9.14% for 2D shapes and up to 14.02% for 3D shapes. Also for 2D datasets, the proposed AGSF has outperformed the deep learning methods by 17.3%
    corecore