3,188 research outputs found

    Efficient Implementation of the Room Simulator for Training Deep Neural Network Acoustic Models

    Full text link
    In this paper, we describe how to efficiently implement an acoustic room simulator to generate large-scale simulated data for training deep neural networks. Even though Google Room Simulator in [1] was shown to be quite effective in reducing the Word Error Rates (WERs) for far-field applications by generating simulated far-field training sets, it requires a very large number of Fast Fourier Transforms (FFTs) of large size. Room Simulator in [1] used approximately 80 percent of Central Processing Unit (CPU) usage in our CPU + Graphics Processing Unit (GPU) training architecture [2]. In this work, we implement an efficient OverLap Addition (OLA) based filtering using the open-source FFTW3 library. Further, we investigate the effects of the Room Impulse Response (RIR) lengths. Experimentally, we conclude that we can cut the tail portions of RIRs whose power is less than 20 dB below the maximum power without sacrificing the speech recognition accuracy. However, we observe that cutting RIR tail more than this threshold harms the speech recognition accuracy for rerecorded test sets. Using these approaches, we were able to reduce CPU usage for the room simulator portion down to 9.69 percent in CPU/GPU training architecture. Profiling result shows that we obtain 22.4 times speed-up on a single machine and 37.3 times speed up on Google's distributed training infrastructure.Comment: Published at INTERSPEECH 2018. (https://www.isca-speech.org/archive/Interspeech_2018/abstracts/2566.html

    GWA: A Large High-Quality Acoustic Dataset for Audio Processing

    Full text link
    We present the Geometric-Wave Acoustic (GWA) dataset, a large-scale audio dataset of over 2 million synthetic room impulse responses (IRs) and their corresponding detailed geometric and simulation configurations. Our dataset samples acoustic environments from over 6.8K high-quality diverse and professionally designed houses represented as semantically labeled 3D meshes. We also present a novel real-world acoustic materials assignment scheme based on semantic matching that uses a sentence transformer model. We compute high-quality impulse responses corresponding to accurate low-frequency and high-frequency wave effects by automatically calibrating geometric acoustic ray-tracing with a finite-difference time-domain wave solver. We demonstrate the higher accuracy of our IRs by comparing with recorded IRs from complex real-world environments. The code and the full dataset will be released at the time of publication. Moreover, we highlight the benefits of GWA on audio deep learning tasks such as automated speech recognition, speech enhancement, and speech separation. We observe significant improvement over prior synthetic IR datasets in all tasks due to using our dataset.Comment: Project webpage https://gamma.umd.edu/pro/sound/gw
    • …
    corecore