439 research outputs found

    A Framework for Developing Real-Time OLAP algorithm using Multi-core processing and GPU: Heterogeneous Computing

    Full text link
    The overwhelmingly increasing amount of stored data has spurred researchers seeking different methods in order to optimally take advantage of it which mostly have faced a response time problem as a result of this enormous size of data. Most of solutions have suggested materialization as a favourite solution. However, such a solution cannot attain Real- Time answers anyhow. In this paper we propose a framework illustrating the barriers and suggested solutions in the way of achieving Real-Time OLAP answers that are significantly used in decision support systems and data warehouses

    Contributions Ă  l’Optimisation de RequĂȘtes Multidimensionnelles

    Get PDF
    Analyser les donnĂ©es consiste Ă  choisir un sous-ensemble des dimensions qui les dĂ©criventafin d'en extraire des informations utiles. Or, il est rare que l'on connaisse a priori les dimensions"intĂ©ressantes". L'analyse se transforme alors en une activitĂ© exploratoire oĂč chaque passe traduit par une requĂȘte. Ainsi, il devient primordiale de proposer des solutions d'optimisationde requĂȘtes qui ont une vision globale du processus plutĂŽt que de chercher Ă  optimiser chaque requĂȘteindĂ©pendamment les unes des autres. Nous prĂ©sentons nos contributions dans le cadre de cette approcheexploratoire en nous focalisant sur trois types de requĂȘtes: (i) le calcul de bordures,(ii) les requĂȘtes dites OLAP (On Line Analytical Processing) dans les cubes de donnĂ©es et (iii) les requĂȘtesde prĂ©fĂ©rence type skyline

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    The LitOLAP Project: Data Warehousing with Literature

    Get PDF
    The litOLAP project seeks to apply the Business Intelligence techniques of Data Warehousing and OLAP to the domain of text processing (specifically, computer-aided literary studies). A literary data warehouse is similar to a conventional corpus, but its data is stored and organized in multidimensional cubes, in order to promote efficient end-user queries. An initial implementation exists for litOLAP, and emphasis has been placed on cube-storage methods and caching intermediate results for reuse. Work continues on improving the query engine, the ETL process, and the user interfaces

    OLEMAR: An Online Environment for Mining Association Rules in Multidimensional Data

    Get PDF
    Data warehouses and OLAP (online analytical processing) provide tools to explore and navigate through data cubes in order to extract interesting information under different perspectives and levels of granularity. Nevertheless, OLAP techniques do not allow the identification of relationships, groupings, or exceptions that could hold in a data cube. To that end, we propose to enrich OLAP techniques with data mining facilities to benefit from the capabilities they offer. In this chapter, we propose an online environment for mining association rules in data cubes. Our environment called OLEMAR (online environment for mining association rules), is designed to extract associations from multidimensional data. It allows the extraction of inter-dimensional association rules from data cubes according to a sum-based aggregate measure, a more general indicator than aggregate values provided by the traditional COUNT measure. In our approach, OLAP users are able to drive a mining process guided by a meta-rule, which meets their analysis objectives. In addition, the environment is based on a formalization, which exploits aggregate measures to revisit the definition of the support and the confidence of discovered rules. This formalization also helps evaluate the interestingness of association rules according to two additional quality measures: lift and loevinger. Furthermore, in order to focus on the discovered associations and validate them, we provide a visual representation based on the graphic semiology principles. Such a representation consists in a graphic encoding of frequent patterns and association rules in the same multidimensional space as the one associated with the mined data cube. We have developed our approach as a component in a general online analysis platform called Miningcubes according to an Apriori-like algorithm, which helps extract inter-dimensional association rules directly from materialized multidimensional structures of data. In order to illustrate the effectiveness and the efficiency of our proposal, we analyze a real-life case study about breast cancer data and conduct performance experimentation of the mining process
    • 

    corecore