20,972 research outputs found

    Distributed Key Management for Secure Role Based Messaging

    Get PDF
    Secure Role Based Messaging (SRBM) augments messaging systems with role oriented communication in a secure manner. Role occupants can sign and decrypt messages on behalf of roles. This paper identifies the requirements of SRBM and recognises the need for: distributed key shares, fast membership revocation, mandatory security controls and detection of identity spoofing. A shared RSA scheme is constructed. RSA keys are shared and distributed to role occupants and role gate keepers. Role occupants and role gate keepers must cooperate together to use the key shares to sign and decrypt the messages. Role occupant signatures can be verified by an audit service. A SRBM system architecture is developed to show the security related performance of the proposed scheme, which also demonstrates the implementation of fast membership revocation, mandatory security control and prevention of spoofing. It is shown that the proposed scheme has successfully coupled distributed security with mandatory security controls to realize secure role based messaging

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure
    corecore