974 research outputs found

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    A genetic-inspired joint multicast routing and channel assignment algorithm in wireless mesh networks

    Get PDF
    Copyright @ 2008 IEEEThis paper proposes a genetic algorithm (GA) based optimization approach to search a minimum-interference multicast tree which satis¯es the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. The path-oriented en- coding method is used and each chromosome is represented by a tree data structure (i.e., a set of paths). Since we expect the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. Crossover and mutation are well designed to adapt to the tree structure. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed GA based multicast algorithm achieves better performance in terms of both the total channel conflict and the tree cost than that of a well known algorithm

    Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using simulated annealing

    Get PDF
    This is the post-print version of the article - Copyright @ 2008 Springer-VerlagThis paper proposes a simulated annealing (SA) algorithm based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. In the proposed SA multicast algorithm, the path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we anticipate the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the annealing process are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed SA based multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Multipath routing for video delivery over bandwidth-limited networks

    Get PDF
    The delivery of quality video service often requires high bandwidth with low delay or cost in network transmission. Current routing protocols such as those used in the Internet are mainly based on the single-path approach (e.g., the shortest-path routing). This approach cannot meet the end-to-end bandwidth requirement when the video is streamed over bandwidth-limited networks. In order to overcome this limitation, we propose multipath routing, where the video takes multiple paths to reach its destination(s), thereby increasing the aggregate throughput. We consider both unicast (point-to-point) and multicast scenarios. For unicast, we present an efficient multipath heuristic (of complexity O(|V|3)), which achieves high bandwidth with low delay. Given a set of path lengths, we then present and prove a simple data scheduling algorithm as implemented at the server, which achieves the theoretical minimum end-to-end delay. For a network with unit-capacity links, the algorithm, when combined with disjoint-path routing, offers an exact and efficient solution to meet a bandwidth requirement with minimum delay. For multicast, we study the construction of multiple trees for layered video to satisfy the user bandwidth requirements. We propose two efficient heuristics on how such trees can be constructed so as to minimize the cost of their aggregation subject to a delay constraint.published_or_final_versio

    QoS-VNS-CS: QoS constraints Core Selection Algorithm based on Variable Neighborhood Search Algorithm

    Get PDF
    Within the development of network multimedia technology, more and more real-time multimedia applications arrive with the need to transmit information using multicast communication. Multicast IP routing is an important topic, covering both theoretical and practical interest in different networks layers. In network layer, there are several multicast routing protocols using multicast routing trees different in the literature. However PIM-SM and CBT protocols remains the most used multicast routing protocols; they propose using a shared Core-based Tree CBT. This kind of tree provides efficient management of multicast path in changing group memberships, scalability and performance. The prime problem concerning construction of a shared tree is to determine the best position of the core. QoS-CS’s problem (QoS constraints core Selection) consists in choosing an optimal multicast router in the network as core of the Shared multicast Tree (CBT) within specified QoS constraints associated. The choice of this specific router, called RP in PIM-SM protocol and core in CBT protocol, affects the structure of multicast routing tree, and therefore influences performances of both multicast session and routing scheme. QoS-CS is an NP complete problem need to be solved through a heuristic algorithm, in this paper, we propose a new core Selection algorithm based on Variable Neighborhood Search algorithm and new CMP fitness function. Simulation results show that good performance is achieved in multicast cost, end-to-end delay, tree construction delay and others metrics

    Minimum-cost multicast over coded packet networks

    Get PDF
    We consider the problem of establishing minimum-cost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomial-time solvable optimization problem, and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved

    Study of architecture and protocols for reliable multicasting in packet switching networks

    Get PDF
    Group multicast protocols have been challenged to provide scalable solutions that meet the following requirements: (i) reliable delivery from different sources to all destinations within a multicast group; (ii) congestion control among multiple asynchronous sources. Although it is mainly a transport layer task, reliable group multicasting depends on routing architectures as well. This dissertation covers issues of both network and transport layers. Two routing architectures, tree and ring, are surveyed with a comparative study of their routing costs and impact to upper layer performances. Correspondingly, two generic transport protocol models are established for performance study. The tree-based protocol is rate-based and uses negative acknowledgment mechanisms for reliability control, while the ring-based protocol uses window-based flow control and positive acknowledgment schemes. The major performance measures observed in the study are network cost, multicast delay, throughput and efficiency. The results suggest that the tree architecture costs less at network layer than the ring, and helps to minimize latency under light network load. Meanwhile, heavy load reliable group multicasting can benefit from ring architecture, which facilitates window-based flow and congestion control. Based on the comparative study, a new two-hierarchy hybrid architecture, Rings Interconnected with Tree Architecture (RITA), is presented. Here, a multicast group is partitioned into multiple clusters with the ring as the intra-cluster architecture, and the tree as backbone architecture that implements inter-cluster multicasting. To compromise between performance measures such as delay and through put, reliability and congestion controls are accomplished at the transport layer with a hybrid use of rate and window-based protocols, which are based on either negative or positive feedback mechanisms respectively. Performances are compared with simulations against tree- and ring-based approaches. Results are encouraging because RITA achieves similar throughput performance as the ring-based protocol, but with significantly lowered delay. Finally, the multicast tree packing problem is discussed. In a network accommodating multiple concurrent multicast sessions, routing for an individual session can be optimized to minimize the competition with other sessions, rather than to minimize cost or delay. Packing lower bound and a heuristic are investigated. Simulation show that congestion can be reduced effectively with limited cost increase of routings
    corecore