1,505 research outputs found

    Efficient Hash-routing and Domain Clustering Techniques for Information-Centric Networks

    Get PDF
    Hash-routing is a well-known technique used in server-cluster environments to direct content requests to the responsible servers hosting the requested content. In this work, we look at hash-routing from a different angle and apply the technique to Information-Centric Networking (ICN) environments, where in-network content caches serve as temporary storage for content. In particular, edge-domain routers re-direct requests to in-network caches, more often than not off the shortest path, according to the hash-assignment function. Although the benefits of this off-path in-network caching scheme are significant (e.g., high cache hit rate with minimal co-ordination overhead), the basic scheme comes with disadvantages. That is, in case of very large domains the off-path detour of requests might increase latency to prohibitive levels. In order to deal with extensive detour delays, we investigate nodal/domain clustering techniques, according to which large domains are split in clusters, which in turn apply hash-routing in the subset of nodes of each cluster. We model and evaluate the behaviour of nodal clustering and report significant improvement in delivery latency, which comes at the cost of a slight decrease in cache hit rates (i.e., up to 50% improvement in delivery latency for less than 10% decrease in cache hit rate compared to the original hash-routing scheme applied in the whole domain)

    Scalable bloom-filter based content dissemination in community networks using information centric principles

    Get PDF
    Information-Centric Networking (ICN) is a new communication paradigm that shifts the focus from content location to content objects themselves. Users request the content by its name or some other form of identifier. Then, the network is responsible for locating the requested content and sending it to the users. Despite a large number of works on ICN in recent years, the problem of scalability of ICN systems has not been studied and addressed adequately. This is especially true when considering real-world deployments and the so-called alternative networks such as community networks. In this work, we explore the applicability of ICN principles in the challenging and unpredictable environments of community networks. In particular, we focus on stateless content dissemination based on Bloom filters (BFs). We highlight the scalability limitations of the classical single-stage BF based approach and argue that by enabling multiple BF stages would lead to performance enhancements. That is, a multi-stage BF based content dissemination mechanism could support large network topologies with heterogeneous traffic and diverse channel conditions. In addition to scalability improvements, this approach also is more secure with regard to Denial of Service attacks

    Distributed Efficient Similarity Search Mechanism in Wireless Sensor Networks

    Get PDF
    The Wireless Sensor Network similarity search problem has received considerable research attention due to sensor hardware imprecision and environmental parameter variations. Most of the state-of-the-art distributed data centric storage (DCS) schemes lack optimization for similarity queries of events. In this paper, a DCS scheme with metric based similarity searching (DCSMSS) is proposed. DCSMSS takes motivation from vector distance index, called iDistance, in order to transform the issue of similarity searching into the problem of an interval search in one dimension. In addition, a sector based distance routing algorithm is used to efficiently route messages. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries

    Framework and Algorithms for Operator-Managed Content Caching

    Get PDF
    We propose a complete framework targeting operator-driven content caching that can be equally applied to both ISP-operated Content Delivery Networks (CDNs) and future Information-Centric Networks (ICNs). In contrast to previous proposals in this area, our solution leverages operators’ control on cache placement and content routing, managing to considerably reduce network operating costs by minimizing the amount of transit traffic and balancing load among available network resources. In addition, our solution provides two key advantages over previous proposals. First, it allows for a simple computation of the optimal cache placement. Second, it provides knobs for operators to fine-tune performance. We validate our design through both analytical modeling and trace-driven simulations and show that our proposed solution achieves on average twice as many cache hits in comparison to previously proposed techniques, without increasing delivery latency. In addition, we show that the proposed framework achieves 19-33% better load balancing across links and caching nodes, being also robust to traffic spikes

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks
    • …
    corecore