39 research outputs found

    Ultralightweight Cryptography for passive RFID systems

    Get PDF
    RFID (Radio Frequency Identification) is one of the most growing technologies among the pervasive systems. Non line of sight capability makes RFID systems much faster than its other contending systems such as barcodes and magnetic taps etc. But there are some allied security apprehensions with RFID systems. RFID security has been acquired a lot of attention in last few years as evinced by the large number of publications (over 3000). In this paper, a brief survey of eminent ultralightweight authentication protocols has been presented & then a four-layer security model, which comprises of various passive and active attacks, has been proposed. Finally, Cryptanalysis of these protocols has also been performed under the implications of the proposed security model

    A Blockchain-Based Mutual Authentication Method to Secure the Electric Vehicles’ TPMS

    Get PDF
    Despite the widespread use of Radio Frequency Identification (RFID) and wireless connectivity such as Near Field Communication (NFC) in electric vehicles, their security and privacy implications in Ad-Hoc networks have not been well explored. This paper provides a data protection assessment of radio frequency electronic system in the Tire Pressure Monitoring System (TPMS). It is demonstrated that eavesdropping is completely feasible from a passing car, at an approximate distance up to 50 meters. Furthermore, our reverse analysis shows that the static n -bit signatures and messaging can be eavesdropped from a relatively far distance, raising privacy concerns as a vehicles' movements can be tracked by using the unique IDs of tire pressure sensors. Unfortunately, current protocols do not use authentication, and automobile technologies hardly follow routine message confirmation so sensor messages may be spoofed remotely. To improve the security of TPMS, we suggest a novel ultra-lightweight mutual authentication for the TPMS registry process in the automotive network. Our experimental results confirm the effectiveness and security of the proposed method in TPMS.©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios
    corecore