15,798 research outputs found

    Coplanar Repeats by Energy Minimization

    Full text link
    This paper proposes an automated method to detect, group and rectify arbitrarily-arranged coplanar repeated elements via energy minimization. The proposed energy functional combines several features that model how planes with coplanar repeats are projected into images and captures global interactions between different coplanar repeat groups and scene planes. An inference framework based on a recent variant of α\alpha-expansion is described and fast convergence is demonstrated. We compare the proposed method to two widely-used geometric multi-model fitting methods using a new dataset of annotated images containing multiple scene planes with coplanar repeats in varied arrangements. The evaluation shows a significant improvement in the accuracy of rectifications computed from coplanar repeats detected with the proposed method versus those detected with the baseline methods.Comment: 14 pages with supplemental materials attache

    A constructive arbitrary-degree Kronecker product decomposition of tensors

    Get PDF
    We propose the tensor Kronecker product singular value decomposition~(TKPSVD) that decomposes a real kk-way tensor A\mathcal{A} into a linear combination of tensor Kronecker products with an arbitrary number of dd factors A=∑j=1Rσj Aj(d)⊗⋯⊗Aj(1)\mathcal{A} = \sum_{j=1}^R \sigma_j\, \mathcal{A}^{(d)}_j \otimes \cdots \otimes \mathcal{A}^{(1)}_j. We generalize the matrix Kronecker product to tensors such that each factor Aj(i)\mathcal{A}^{(i)}_j in the TKPSVD is a kk-way tensor. The algorithm relies on reshaping and permuting the original tensor into a dd-way tensor, after which a polyadic decomposition with orthogonal rank-1 terms is computed. We prove that for many different structured tensors, the Kronecker product factors Aj(1),…,Aj(d)\mathcal{A}^{(1)}_j,\ldots,\mathcal{A}^{(d)}_j are guaranteed to inherit this structure. In addition, we introduce the new notion of general symmetric tensors, which includes many different structures such as symmetric, persymmetric, centrosymmetric, Toeplitz and Hankel tensors.Comment: Rewrote the paper completely and generalized everything to tensor

    Asymmetries arising from the space-filling nature of vascular networks

    Full text link
    Cardiovascular networks span the body by branching across many generations of vessels. The resulting structure delivers blood over long distances to supply all cells with oxygen via the relatively short-range process of diffusion at the capillary level. The structural features of the network that accomplish this density and ubiquity of capillaries are often called space-filling. There are multiple strategies to fill a space, but some strategies do not lead to biologically adaptive structures by requiring too much construction material or space, delivering resources too slowly, or using too much power to move blood through the system. We empirically measure the structure of real networks (18 humans and 1 mouse) and compare these observations with predictions of model networks that are space-filling and constrained by a few guiding biological principles. We devise a numerical method that enables the investigation of space-filling strategies and determination of which biological principles influence network structure. Optimization for only a single principle creates unrealistic networks that represent an extreme limit of the possible structures that could be observed in nature. We first study these extreme limits for two competing principles, minimal total material and minimal path lengths. We combine these two principles and enforce various thresholds for balance in the network hierarchy, which provides a novel approach that highlights the trade-offs faced by biological networks and yields predictions that better match our empirical data.Comment: 17 pages, 15 figure

    Deep Learning for Vanishing Point Detection Using an Inverse Gnomonic Projection

    Full text link
    We present a novel approach for vanishing point detection from uncalibrated monocular images. In contrast to state-of-the-art, we make no a priori assumptions about the observed scene. Our method is based on a convolutional neural network (CNN) which does not use natural images, but a Gaussian sphere representation arising from an inverse gnomonic projection of lines detected in an image. This allows us to rely on synthetic data for training, eliminating the need for labelled images. Our method achieves competitive performance on three horizon estimation benchmark datasets. We further highlight some additional use cases for which our vanishing point detection algorithm can be used.Comment: Accepted for publication at German Conference on Pattern Recognition (GCPR) 2017. This research was supported by German Research Foundation DFG within Priority Research Programme 1894 "Volunteered Geographic Information: Interpretation, Visualisation and Social Computing
    • …
    corecore