3,230 research outputs found

    Efficient Group Signature Scheme without Pairings

    Get PDF
    Group signature is a useful cryptographic primitive, which makes every group member sign messages on behalf of a group they belong to. Namely group signature allows that group member anonymously signs any message without revealing his/her specific identity. However, group signature may make the signers abuse their signing rights if there are no measures of keeping them from abusing signing rights in the group signature schemes. So, group manager must be able to trace (or reveal) the identity of the signer by the signature when the result of the signature needs to be arbitrated, and some revoked group members must fully lose their capability of signing a message on behalf of the group they belong to. A practical model meeting the requirement is verifier-local revocation, which supports the revocation of group member. In this model, the verifiers receive the group member revocation messages from the trusted authority when the relevant signatures need to be verified. Although currently many group signature schemes have been proposed, most of them are constructed on pairings. In this paper, we present an efficient group signature scheme without pairings under the model of verifier-local revocation, which is based on the modified EDL signature (first proposed by D. Chaum et al. in Crypto 92). Compared with other group signature schemes, the proposed scheme does not employ pairing computation and has the constant signing time and signature size, whose security can be reduced to the computational Diffie-Hellman (CDH) assumption in the random oracle model. Also, we give a formal security model for group signature and prove that the proposed scheme has the properties of traceability and anonymity

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    A Digital Signature Scheme for Long-Term Security

    Full text link
    In this paper we propose a signature scheme based on two intractable problems, namely the integer factorization problem and the discrete logarithm problem for elliptic curves. It is suitable for applications requiring long-term security and provides a more efficient solution than the existing ones

    Efficient Conditional Proxy Re-encryption with Chosen-Ciphertext Security

    Get PDF
    Recently, a variant of proxy re-encryption, named conditional proxy re-encryption (C-PRE), has been introduced. Compared with traditional proxy re-encryption, C-PRE enables the delegator to implement fine-grained delegation of decryption rights, and thus is more useful in many applications. In this paper, based on a careful observation on the existing definitions and security notions for C-PRE, we reformalize more rigorous definition and security notions for C-PRE. We further propose a more efficient C-PRE scheme, and prove its chosenciphertext security under the decisional bilinear Diffie-Hellman (DBDH) assumption in the random oracle model. In addition, we point out that a recent C-PRE scheme fails to achieve the chosen-ciphertext security

    On the Relations Between Diffie-Hellman and ID-Based Key Agreement from Pairings

    Get PDF
    This paper studies the relationships between the traditional Diffie-Hellman key agreement protocol and the identity-based (ID-based) key agreement protocol from pairings. For the Sakai-Ohgishi-Kasahara (SOK) ID-based key construction, we show that identical to the Diffie-Hellman protocol, the SOK key agreement protocol also has three variants, namely \emph{ephemeral}, \emph{semi-static} and \emph{static} versions. Upon this, we build solid relations between authenticated Diffie-Hellman (Auth-DH) protocols and ID-based authenticated key agreement (IB-AK) protocols, whereby we present two \emph{substitution rules} for this two types of protocols. The rules enable a conversion between the two types of protocols. In particular, we obtain the \emph{real} ID-based version of the well-known MQV (and HMQV) protocol. Similarly, for the Sakai-Kasahara (SK) key construction, we show that the key transport protocol underlining the SK ID-based encryption scheme (which we call the "SK protocol") has its non-ID counterpart, namely the Hughes protocol. Based on this observation, we establish relations between corresponding ID-based and non-ID-based protocols. In particular, we propose a highly enhanced version of the McCullagh-Barreto protocol
    • …
    corecore