1,746 research outputs found

    A fairness-driven resource allocation scheme based on weighted interference graph in HetNets

    Get PDF
    —One of the most important 5G features is their support for heterogeneous networks (HetNets). Complementing the classic macrocell base stations (MBS), femtocell base stations (FBS) are beneficial in terms of extensive coverage, including indoor, and enhancement of capacity. Unfortunately, FBSs performance in 5G HetNets is affected by complex cross-tier and co-tier interferences, causing reduced quality of service (QoS) and unfairness among users. This paper proposes an innovative resource allocation (RA) algorithm for interference mitigation (IM) based on graph coloring techniques to improve QoS and interuser fairness. The proposed algorithm, named Weighted EdgeWeighted Vertex Interference Mitigation (WEWVIM), employs a weight to the directed edge corresponding to the interference strength from nearby base stations (BSs) and a weight to every vertex, indicating the color with the smallest interference or higher transmission rate. A region of interest (ROI) is formed to find the interfering BSs. Simulation results show that WEWVIM outperforms existing schemes in terms of fairness and QoS, including throughput, packet loss ratio (PLR), delay, and jitter. Index Terms—HetNets, Graph Coloring, Interference Mitigation, 5G, QoS, Resource Allocatio

    Static and dynamic optimization problems in cooperative multi-agent systems

    Full text link
    This dissertation focuses on challenging static and dynamic problems encountered in cooperative multi-agent systems. First, a unified optimization framework is proposed for a wide range of tasks including consensus, optimal coverage, and resource allocation problems. It allows gradient-based algorithms to be applied to solve these problems, all of which have been studied in a separate way in the past. Gradient-based algorithms are shown to be distributed for a subclass of problems where objective functions can be decoupled. Second, the issue of global optimality is studied for optimal coverage problems where agents are deployed to maximize the joint detection probability. Objective functions in these problems are non-convex and no global optimum can be guaranteed by gradient-based algorithms developed to date. In order to obtain a solution close to the global optimum, the selection of initial conditions is crucial. The initial state is determined by an additional optimization problem where the objective function is monotone submodular, a class of functions for which the greedy solution performance is guaranteed to be within a provable bound relative to the optimal performance. The bound is known to be within 1 − 1/e of the optimal solution and is improved by exploiting the curvature information of the objective function. The greedy solution is subsequently used as an initial point of a gradient-based algorithm for the original optimal coverage problem. In addition, a novel method is proposed to escape a local optimum in a systematic way instead of randomly perturbing controllable variables away from a local optimum. Finally, optimal dynamic formation control problems are addressed for mobile leader-follower networks. Optimal formations are determined by maximizing a given objective function while continuously preserving communication connectivity in a time-varying environment. It is shown that in a convex mission space, the connectivity constraints can be satisfied by any feasible solution to a Mixed Integer Nonlinear Programming (MINLP) problem. For the class of optimal formation problems where the objective is to maximize coverage, the optimal formation is proven to be a tree which can be efficiently constructed without solving a MINLP problem. In a mission space constrained by obstacles, a minimum-effort reconfiguration approach is designed for obtaining the formation which still optimizes the objective function while avoiding the obstacles and ensuring connectivity

    Joint topology optimization, power control and spectrum allocation for intra-vehicular multi-hop sensor networks using dandelion-encoded heuristics

    Get PDF
    In the last years the interest in multi-hop communications has gained momentum within the research community due to the challenging characteristics of the intra-vehicular radio environment and the stringent robustness imposed on critical sensors within the vehicle. As opposed to point-to-point network topologies, multi-hop networking allows for an enhanced communication reliability at the cost of an additional processing overhead. In this context this manuscript poses a novel bi-objective optimization problem aimed at jointly minimizing (1) the average Bit Error Rate (BER) of sensing nodes under a majority fusion rule at the central data collection unit; and (2) the mean delay experienced by packets forwarded by such nodes due to multi-hop networking, frequency channel switching time multiplexing at intermediate nodes. The formulated paradigm is shown to be computationally tractable via a combination of evolutionary meta-heuristic algorithms and Dandelion codes, the latter capable of representing tree-like structures like those modeling the multi-hop routing approach. Simulations are carried out for realistic values of intra-vehicular radio channels and co-channel interference due to nearby IEEE 802.11 signals. The obtained results are promising and pave the way towards assessing the practical performance of the proposed scheme in real setups

    The Design of Medium Access Control (MAC) Protocols for Energy Efficient and QoS Provision in Wireless Sensor Networks

    Get PDF
    This thesis work focuses on innovative design of media access control (MAC) protocols in wireless sensor networks (WNSs). The characteristics of the WSN inquire that the network service design considers both energy efficiency and the associated application requirement. However, most existing protocols address only the issue of energy efficiency. In this thesis, a MAC protocol has been proposed (referred to as Q-MAC) that not only minimized the energy consumption in multi-hop WSNs, but also provides Quality of Service (QoS) by differentiating network services based on priority levels prescribed by different applications. The priority levels reflect the state of system resources including residual energy and queue occupancies. Q-MAC contains both intra- and inter- node arbitration mechanisms. The intra-node packet scheduling employs a multiple queuing architectures, and applies a scheduling scheme consisting of packet classification and weighted arbitration. We introduce the Power Conservation MACAW (PC-MACAW), a power-aware scheduling mechanism which, together with the Loosely Prioritized Random Access (LPRA) algorithm, govern the inter-node scheduling. Performance evaluation are conducted between Q-MAC and S-MAC with respect to two performance metrics: energy consumption and average latency. Simulation results indicate Q-MAC achieves comparable performance to that of S-MAC in non-prioritized traffic scenarios. When packets with different priorities are introduced, Q-MAC yields noticeable average latency differentiations between the classes of service, while preserving the same degree of energy consumption as that of S-MAC. Since the high density nature of WSN may introduce heavy traffic load and thus consume large amount of energy for communication, another MAC protocol, referred to as the Deployment-oriented MAC (D-MAC)has been further proposed. D-MAC minimalizes both sensing and communication redundancy by putting majority of redundant nodes into the sleep state. The idea is to establish a sensing and communication backbone covering the whole sensing field with the least sensing and communication redundancy. In specific, we use equal-size rectangular cells to partition the sensing field and chose the size of each cell in a way such that regardless of the actual location within the cell, a node can always sense the whole cell and communicate with all the nodes in neighboring cells. Once the sensing field has been partitioned using these cells, a localized Location-aware Selection Algorithm (LSA) is carried out to pick up only one node within each cell to be active for a fixed amount of period. This selection is energy-oriented, only nodes with a maximum energy will be on and the rest of nodes will be put into the sleep state once the selection process is over. To balance the energy consumption, the selection algorithm is periodically conducted until all the nodes are out of power. Simulation results indicated that D-MAC saves around 80% energy compared to that of S-MAC and Q-MAC, while maintaining 99% coverage. D-MAC is also superior to S-MAC and Q-MAC in terms of average latency. However, the use of GPS in D-MAC in identifying the nodes within the same cell, would cause extra cost and complexity for the design of sensor nodes

    A composable approach to design of newer techniques for large-scale denial-of-service attack attribution

    Get PDF
    Since its early days, the Internet has witnessed not only a phenomenal growth, but also a large number of security attacks, and in recent years, denial-of-service (DoS) attacks have emerged as one of the top threats. The stateless and destination-oriented Internet routing combined with the ability to harness a large number of compromised machines and the relative ease and low costs of launching such attacks has made this a hard problem to address. Additionally, the myriad requirements of scalability, incremental deployment, adequate user privacy protections, and appropriate economic incentives has further complicated the design of DDoS defense mechanisms. While the many research proposals to date have focussed differently on prevention, mitigation, or traceback of DDoS attacks, the lack of a comprehensive approach satisfying the different design criteria for successful attack attribution is indeed disturbing. Our first contribution here has been the design of a composable data model that has helped us represent the various dimensions of the attack attribution problem, particularly the performance attributes of accuracy, effectiveness, speed and overhead, as orthogonal and mutually independent design considerations. We have then designed custom optimizations along each of these dimensions, and have further integrated them into a single composite model, to provide strong performance guarantees. Thus, the proposed model has given us a single framework that can not only address the individual shortcomings of the various known attack attribution techniques, but also provide a more wholesome counter-measure against DDoS attacks. Our second contribution here has been a concrete implementation based on the proposed composable data model, having adopted a graph-theoretic approach to identify and subsequently stitch together individual edge fragments in the Internet graph to reveal the true routing path of any network data packet. The proposed approach has been analyzed through theoretical and experimental evaluation across multiple metrics, including scalability, incremental deployment, speed and efficiency of the distributed algorithm, and finally the total overhead associated with its deployment. We have thereby shown that it is realistically feasible to provide strong performance and scalability guarantees for Internet-wide attack attribution. Our third contribution here has further advanced the state of the art by directly identifying individual path fragments in the Internet graph, having adopted a distributed divide-and-conquer approach employing simple recurrence relations as individual building blocks. A detailed analysis of the proposed approach on real-life Internet topologies with respect to network storage and traffic overhead, has provided a more realistic characterization. Thus, not only does the proposed approach lend well for simplified operations at scale but can also provide robust network-wide performance and security guarantees for Internet-wide attack attribution. Our final contribution here has introduced the notion of anonymity in the overall attack attribution process to significantly broaden its scope. The highly invasive nature of wide-spread data gathering for network traceback continues to violate one of the key principles of Internet use today - the ability to stay anonymous and operate freely without retribution. In this regard, we have successfully reconciled these mutually divergent requirements to make it not only economically feasible and politically viable but also socially acceptable. This work opens up several directions for future research - analysis of existing attack attribution techniques to identify further scope for improvements, incorporation of newer attributes into the design framework of the composable data model abstraction, and finally design of newer attack attribution techniques that comprehensively integrate the various attack prevention, mitigation and traceback techniques in an efficient manner

    VNR Algorithm: A Greedy Approach For Virtual Networks Reconfigurations

    Get PDF
    6 pagesInternational audienceIn this paper we address the problem of virtual network reconfiguration. In our previous work on virtual network embedding strategies, we found that most virtual network rejections were caused by bottlenecked substrate links while peak resource use is equal to 18%. These observations lead us to propose a new greedy Virtual Network Reconfiguration algorithm, VNR. The main aim of our proposal is to 'tidy up' substrate network in order to minimise the number of overloaded substrate links, while also reducing the cost of reconfiguration. We compare our proposal with the related reconfiguration strategy VNA-Periodic, both of them are incorporated in the best existing embedding strategies VNE-AC and VNE-Greedy in terms of rejection rate. The results obtained show that VNR outperforms VNA-Periodic. Indeed, our research shows that the performances of VNR do not depend on the virtual network embedding strategy. Moreover, VNR minimises the rejection rate of virtual network requests by at least ' 83% while the cost of reconfiguration is lower than with VNA-Periodic

    Distributed Detection and Estimation in Wireless Sensor Networks

    Full text link
    In this article we consider the problems of distributed detection and estimation in wireless sensor networks. In the first part, we provide a general framework aimed to show how an efficient design of a sensor network requires a joint organization of in-network processing and communication. Then, we recall the basic features of consensus algorithm, which is a basic tool to reach globally optimal decisions through a distributed approach. The main part of the paper starts addressing the distributed estimation problem. We show first an entirely decentralized approach, where observations and estimations are performed without the intervention of a fusion center. Then, we consider the case where the estimation is performed at a fusion center, showing how to allocate quantization bits and transmit powers in the links between the nodes and the fusion center, in order to accommodate the requirement on the maximum estimation variance, under a constraint on the global transmit power. We extend the approach to the detection problem. Also in this case, we consider the distributed approach, where every node can achieve a globally optimal decision, and the case where the decision is taken at a central node. In the latter case, we show how to allocate coding bits and transmit power in order to maximize the detection probability, under constraints on the false alarm rate and the global transmit power. Then, we generalize consensus algorithms illustrating a distributed procedure that converges to the projection of the observation vector onto a signal subspace. We then address the issue of energy consumption in sensor networks, thus showing how to optimize the network topology in order to minimize the energy necessary to achieve a global consensus. Finally, we address the problem of matching the topology of the network to the graph describing the statistical dependencies among the observed variables.Comment: 92 pages, 24 figures. To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201
    corecore