43,000 research outputs found

    A Multi-Layer Line Search Method to Improve the Initialization of Optimization Algorithms (Preprint submitted to Optimization Online)

    Get PDF
    We introduce a novel metaheuristic methodology to improve the initialization of a given deterministic or stochastic optimization algorithm. Our objective is to improve the performance of the considered algorithm, called core optimization algorithm, by reducing its number of cost function evaluations, by increasing its success rate and by boosting the precision of its results. In our approach, the core optimization is considered as a suboptimization problem for a multi-layer line search method. The approach is presented and implemented for various particular core optimization algorithms: Steepest Descent, Heavy-Ball, Genetic Algorithm, Differential Evolution and Controlled Random Search. We validate our methodology by considering a set of low and high dimensional benchmark problems (i.e., problems of dimension between 2 and 1000). The results are compared to those obtained with the core optimization algorithms alone and with two additional global optimization methods (Direct Tabu Search and Continuous Greedy Randomized Adaptive Search). These latter also aim at improving the initial condition for the core algorithms. The numerical results seem to indicate that our approach improves the performances of the core optimization algorithms and allows to generate algorithms more efficient than the other optimization methods studied here. A Matlab optimization package called ”Global Optimization Platform” (GOP), implementing the algorithms presented here, has been developed and can be downloaded at: http://www.mat.ucm.es/momat/software.ht

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Effective and efficient algorithm for multiobjective optimization of hydrologic models

    Get PDF
    Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity

    Stochastic axial compressor variable geometry schedule optimisation

    Get PDF
    The design of axial compressors is dictated by the maximisation of flow efficiency at on design conditions whereas at part speed the requirement for operation stability prevails. Among other stability aids, compressor variable geometry is employed to rise the surge line for the provision of an adequate surge margin. The schedule of the variable vanes is in turn typically obtained from expensive and time consuming rig tests that go through a vast combination of possible settings. The present paper explores the suitability of stochastic approaches to derive the most flow efficient schedule of an axial compressor for a minimum variable user defined value of the surge margin. A genetic algorithm has been purposely developed and its satisfactory performance validated against four representative benchmark functions. The work carries on with the necessary thorough investigation of the impact of the different genetic operators employed on the ability of the algorithm to find the global extremities in an effective and efficient manner. This deems fundamental to guarantee that the algorithm is not trapped in local extremities. The algorithm is then coupled with a compressor performance prediction tool that evaluates each individual's performance through a user defined fitness function. The most flow efficient schedule that conforms to a prescribed surge margin can be obtained thereby fast and inexpensively. Results are produced for a modern eight stage high bypass ratio compressor and compared with experimental data available to the research. The study concludes with the analysis of the existent relationship between surge margin and flow efficiency for the particular compressor under scrutiny. The study concludes with the analysis of the existent relationship between surge margin and flow efficiency for the particular compressor under scrutiny
    corecore