32,346 research outputs found

    Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules

    Full text link
    Limited bonding valence, usually accompanied by well-defined directional interactions and selective bonding mechanisms, is nowadays considered among the key ingredients to create complex structures with tailored properties: even though isotropically interacting units already guarantee access to a vast range of functional materials, anisotropic interactions can provide extra instructions to steer the assembly of specific architectures. The anisotropy of effective interactions gives rise to a wealth of self-assembled structures both in the realm of suitably synthesized nano- and micro-sized building blocks and in nature, where the isotropy of interactions is often a zero-th order description of the complicated reality. In this review, we span a vast range of systems characterized by limited bonding valence, from patchy colloids of new generation to polymer-based functionalized nanoparticles, DNA-based systems and proteins, and describe how the interaction patterns of the single building blocks can be designed to tailor the properties of the target final structures

    Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly

    Full text link
    Motivation: Eugene Myers in his string graph paper (Myers, 2005) suggested that in a string graph or equivalently a unitig graph, any path spells a valid assembly. As a string/unitig graph also encodes every valid assembly of reads, such a graph, provided that it can be constructed correctly, is in fact a lossless representation of reads. In principle, every analysis based on whole-genome shotgun sequencing (WGS) data, such as SNP and insertion/deletion (INDEL) calling, can also be achieved with unitigs. Results: To explore the feasibility of using de novo assembly in the context of resequencing, we developed a de novo assembler, fermi, that assembles Illumina short reads into unitigs while preserving most of information of the input reads. SNPs and INDELs can be called by mapping the unitigs against a reference genome. By applying the method on 35-fold human resequencing data, we showed that in comparison to the standard pipeline, our approach yields similar accuracy for SNP calling and better results for INDEL calling. It has higher sensitivity than other de novo assembly based methods for variant calling. Our work suggests that variant calling with de novo assembly be a beneficial complement to the standard variant calling pipeline for whole-genome resequencing. In the methodological aspects, we proposed FMD-index for forward-backward extension of DNA sequences, a fast algorithm for finding all super-maximal exact matches and one-pass construction of unitigs from an FMD-index. Availability: http://github.com/lh3/fermi Contact: [email protected]: Rev2: submitted version with minor improvements; 7 page

    TRAPID : an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes

    Get PDF
    Transcriptome analysis through next-generation sequencing technologies allows the generation of detailed gene catalogs for non-model species, at the cost of new challenges with regards to computational requirements and bioinformatics expertise. Here, we present TRAPID, an online tool for the fast and efficient processing of assembled RNA-Seq transcriptome data, developed to mitigate these challenges. TRAPID offers high-throughput open reading frame detection, frameshift correction and includes a functional, comparative and phylogenetic toolbox, making use of 175 reference proteomes. Benchmarking and comparison against state-of-the-art transcript analysis tools reveals the efficiency and unique features of the TRAPID system

    Mesoscopic entanglement of noninteracting qubits using collective spontaneous emission

    Full text link
    We describe an experimentally straightforward method for preparing an entangled W state of up to 100 qubits. Our repeat-until-success protocol relies on detection of single photons from collective spontaneous emission in free space. Our method allows entanglement preparation in a wide range of qubit implementations that lack entangling qubit-qubit interactions. We give detailed numerical examples for entanglement of neutral atoms in optical lattices and of nitrogen-vacancy centres in diamond. The simplicity of our method should enable preparation of mesoscopic entangled states in a number of physical systems in the near future.Comment: replaced; corrected per referee comment

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)

    Selection Mapping Identifies Loci Underpinning Autumn Dormancy in Alfalfa (Medicago sativa).

    Get PDF
    Autumn dormancy in alfalfa (Medicago sativa) is associated with agronomically important traits including regrowth rate, maturity, and winter survival. Historical recurrent selection experiments have been able to manipulate the dormancy response. We hypothesized that artificial selection for dormancy phenotypes in these experiments had altered allele frequencies of dormancy-related genes. Here, we follow this hypothesis and analyze allele frequency changes using genome-wide polymorphisms in the pre- and postselection populations from one historical selection experiment. We screened the nondormant cultivar CUF 101 and populations developed by three cycles of recurrent phenotypic selection for taller and shorter plants in autumn with markers derived from genotyping-by-sequencing (GBS). We validated the robustness of our GBS-derived allele frequency estimates using an empirical approach. Our results suggest that selection mapping is a powerful means of identifying genomic regions associated with traits, and that it can be exploited to provide regions on which to focus further mapping and cloning projects

    BASE: a practical de novo assembler for large genomes using long NGS reads

    Get PDF
    © 2016 The Author(s). Background: De novo genome assembly using NGS data remains a computation-intensive task especially for large genomes. In practice, efficiency is often a primary concern and favors using a more efficient assembler like SOAPdenovo2. Yet SOAPdenovo2, based on de Bruijn graph, fails to take full advantage of longer NGS reads (say, 150 bp to 250 bp from Illumina HiSeq and MiSeq). Assemblers that are based on string graphs (e.g., SGA), though less popular and also very slow, are more favorable for longer reads. Methods: This paper shows a new de novo assembler called BASE. It enhances the classic seed-extension approach by indexing the reads efficiently to generate adaptive seeds that have high probability to appear uniquely in the genome. Such seeds form the basis for BASE to build extension trees and then to use reverse validation to remove the branches based on read coverage and paired-end information, resulting in high-quality consensus sequences of reads sharing the seeds. Such consensus sequences are then extended to contigs. Results: Experiments on two bacteria and four human datasets shows the advantage of BASE in both contig quality and speed in dealing with longer reads. In the experiment on bacteria, two datasets with read length of 100 bp and 250 bp were used. Especially for the 250 bp dataset, BASE gives much better quality than SOAPdenovo2 and SGA and is simlilar to SPAdes. Regarding speed, BASE is consistently a few times faster than SPAdes and SGA, but still slower than SOAPdenovo2. BASE and Soapdenov2 are further compared using human datasets with read length 100 bp, 150 bp and 250 bp. BASE shows a higher N50 for all datasets, while the improvement becomes more significant when read length reaches 250 bp. Besides, BASE is more-meory efficent than SOAPdenovo2 when sequencing data with error rate. Conclusions: BASE is a practically efficient tool for constructing contig, with significant improvement in quality for long NGS reads. It is relatively easy to extend BASE to include scaffolding.published_or_final_versio
    corecore